A051682
11-gonal (or hendecagonal) numbers: a(n) = n*(9*n-7)/2.
Original entry on oeis.org
0, 1, 11, 30, 58, 95, 141, 196, 260, 333, 415, 506, 606, 715, 833, 960, 1096, 1241, 1395, 1558, 1730, 1911, 2101, 2300, 2508, 2725, 2951, 3186, 3430, 3683, 3945, 4216, 4496, 4785, 5083, 5390, 5706, 6031, 6365, 6708, 7060, 7421, 7791, 8170
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[n*(9*n-7)/2 : n in [0..50]]; // Wesley Ivan Hurt, Aug 01 2015
-
Table[n (9n-7)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,1,11},51] (* Harvey P. Dale, May 07 2012 *)
-
a(n)=(9*n-7)*n/2 \\ Charles R Greathouse IV, Jun 16 2011
A027468
9 times the triangular numbers A000217.
Original entry on oeis.org
0, 9, 27, 54, 90, 135, 189, 252, 324, 405, 495, 594, 702, 819, 945, 1080, 1224, 1377, 1539, 1710, 1890, 2079, 2277, 2484, 2700, 2925, 3159, 3402, 3654, 3915, 4185, 4464, 4752, 5049, 5355, 5670, 5994, 6327, 6669, 7020, 7380, 7749, 8127, 8514, 8910, 9315
Offset: 0
The first such self-conjugate partitions, corresponding to a(n)=1,2,3,4 are 3+3+3, 6+6+6+3+3+3, 9+9+9+6+6+6+3+3+3, 12+12+12+9+9+9+6+6+6+3+3+3. - _Augustine O. Munagi_, Dec 18 2008
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Augustine O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., Vol. 308, No. 12 (2008), pp. 2492-2501.
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- Leo Tavares, Illustration: Centroid Triangles.
- D. Zvonkine, Counting ramified coverings and intersection theory on Hurwitz spaces II (local structure of Hurwitz spaces and combinatorial results), Moscow Mathematical Journal, Vol. 7, No. 1 (2007), pp. 135-162.
- D. Zvonkine, Home Page.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for two-way infinite sequences.
Cf.
A000459,
A002378,
A008585,
A024966,
A028895,
A028896,
A038764,
A033996,
A045943,
A046092,
A049598,
A059073,
A080855,
A134171,
A283394.
-
[9*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Dec 29 2012
-
[seq(9*binomial(n+1,2), n=0..50)]; # Zerinvary Lajos, Nov 24 2006
-
Table[(9/2)*n*(n+1), {n,0,50}] (* G. C. Greubel, Aug 22 2017 *)
-
a(n)=9*n*(n+1)/2
-
[9*binomial(n+1, 2) for n in (0..50)] # G. C. Greubel, May 20 2021
A062741
3 times pentagonal numbers: 3*n*(3*n-1)/2.
Original entry on oeis.org
0, 3, 15, 36, 66, 105, 153, 210, 276, 351, 435, 528, 630, 741, 861, 990, 1128, 1275, 1431, 1596, 1770, 1953, 2145, 2346, 2556, 2775, 3003, 3240, 3486, 3741, 4005, 4278, 4560, 4851, 5151, 5460, 5778, 6105, 6441, 6786, 7140, 7503, 7875, 8256, 8646, 9045
Offset: 0
The spiral begins:
15
16 14
17 3 13
18 4 2 12
19 5 0 1 11
20 6 7 8 9 10
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[Binomial(3*n,2): n in [0..50]]; // G. C. Greubel, Dec 26 2023
-
[seq(binomial(3*n,2),n=0..45)]; # Zerinvary Lajos, Jan 02 2007
-
3*PolygonalNumber[5,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 06 2019 *)
-
a(n)=3*n*(3*n-1)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[binomial(3*n,2) for n in range(51)] # G. C. Greubel, Dec 26 2023
Better definition and edited by
Omar E. Pol, Dec 11 2008
A081266
Staggered diagonal of triangular spiral in A051682.
Original entry on oeis.org
0, 6, 21, 45, 78, 120, 171, 231, 300, 378, 465, 561, 666, 780, 903, 1035, 1176, 1326, 1485, 1653, 1830, 2016, 2211, 2415, 2628, 2850, 3081, 3321, 3570, 3828, 4095, 4371, 4656, 4950, 5253, 5565, 5886, 6216, 6555, 6903, 7260, 7626, 8001, 8385, 8778, 9180
Offset: 0
a(1)=9*1+0-3=6, a(2)=9*2+6-3=21, a(3)=9*3+21-3=45.
For n=3, a(3) = -0^2+1^2-2^2+3^2-4^2+5^2-6^2+7^2-8^2+9^2 = 45.
- Muniru A Asiru, Table of n, a(n) for n = 0..10000
- Tomislav Došlić and Luka Podrug, Sweet division problems: from chocolate bars to honeycomb strips and back, arXiv:2304.12121 [math.CO], 2023.
- Milan Janjic, Two Enumerative Functions
- Milan Janjic and B. Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
- Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
- Leo Tavares, Star illustration
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([0..50],n->Binomial(3*n+1,2)); # Muniru A Asiru, Feb 28 2019
-
seq(binomial(3*n+1,2), n=0..45); # Zerinvary Lajos, Jan 21 2007
-
LinearRecurrence[{3,-3,1},{0,6,21},50] (* Harvey P. Dale, Aug 29 2015 *)
-
a(n)=3*n*(3*n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
A022267
a(n) = n*(9*n + 1)/2.
Original entry on oeis.org
0, 5, 19, 42, 74, 115, 165, 224, 292, 369, 455, 550, 654, 767, 889, 1020, 1160, 1309, 1467, 1634, 1810, 1995, 2189, 2392, 2604, 2825, 3055, 3294, 3542, 3799, 4065, 4340, 4624, 4917, 5219, 5530, 5850, 6179
Offset: 0
Cf. numbers of the form n*(d*n+10-d)/2:
A008587,
A056000,
A028347,
A140090,
A014106,
A028895,
A045944,
A186029,
A007742,
A033429,
A022268,
A049452,
A186030,
A135703,
A152734,
A139273.
Cf. similar sequences listed in
A254963.
Cf. similar sequences listed in
A022289.
-
seq(binomial(9*n+1,2)/9, n=0..37); # Zerinvary Lajos, Jan 21 2007
-
Table[ n (9 n + 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 19}, 40] (* Harvey P. Dale, Jul 01 2013 *)
-
vector(100,n,(n-1)*(9*n-8)/2) \\ Derek Orr, Feb 06 2015
A131242
Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
Offset: 0
As square array :
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12, 14, 16, 18, 20, 22, 24, 26, 28, 30
33, 36, 39, 42, 45, 48, 51, 54, 57, 60
64, 68, 72, 76, 80, 84, 88, 92, 96, 100
105, 110, 115, 120, 125, 130, 135, 140, 145, 150
156, 162, 168, 174, 180, 186, 192, 198, 204, 210
... - _Philippe Deléham_, Mar 27 2013
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,1,-2,1).
Cf.
A008728,
A059995,
A010879,
A002266,
A130488,
A000217,
A002620,
A130518,
A130519,
A130520,
A174709,
A174738,
A118729,
A218470.
-
Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n,0,50}] (* G. C. Greubel, Dec 13 2016 *)
Accumulate[Table[FromDigits[Most[IntegerDigits[n]]],{n,0,110}]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,1,2},120] (* Harvey P. Dale, Apr 06 2017 *)
-
for(n=0,50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
-
a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016
A174738
Partial sums of floor(n/7).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 111, 117, 123, 129, 135, 141, 147, 154, 161, 168, 175, 182, 189, 196, 204, 212, 220, 228, 236
Offset: 0
a(9) = floor(0/7) + floor(1/7) + floor(2/7) + floor(3/7) + floor(4/7) + floor(5/7) + floor(6/7) + floor(7/7) + floor(8/7) + floor(9/7) = 3.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions, J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,1,-2,1).
-
List([0..60], n-> Int((n-2)*(n-3)/14)); # G. C. Greubel, Aug 31 2019
-
[Round(n*(n-5)/14): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
-
A174738 := proc(n) round(n*(n-5)/14) ; end proc:
seq(A174738(n),n=0..30) ;
-
Table[Floor[(n - 2)*(n - 3)/14], {n,0,60}] (* G. C. Greubel, Dec 13 2016 *)
-
a(n)=(n-2)*(n-3)\14 \\ Charles R Greathouse IV, Sep 24 2015
-
[floor((n-2)*(n-3)/14) for n in (0..60)] # G. C. Greubel, Aug 31 2019
A062728
Second 11-gonal (or hendecagonal) numbers: a(n) = n*(9*n+7)/2.
Original entry on oeis.org
0, 8, 25, 51, 86, 130, 183, 245, 316, 396, 485, 583, 690, 806, 931, 1065, 1208, 1360, 1521, 1691, 1870, 2058, 2255, 2461, 2676, 2900, 3133, 3375, 3626, 3886, 4155, 4433, 4720, 5016, 5321, 5635, 5958, 6290, 6631, 6981, 7340, 7708, 8085, 8471, 8866, 9270
Offset: 0
The spiral begins:
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ / \ \
19 5 0---1 11
/ / \
20 6---7---8---9--10
-
List([0..50], n-> n*(9*n+7)/2); # G. C. Greubel, May 24 2019
-
[n*(9*n+7)/2: n in [0..50]]; // G. C. Greubel, May 24 2019
-
Table[n*(9*n+7)/2, {n,0,50}] (* G. C. Greubel, May 24 2019 *)
LinearRecurrence[{3,-3,1},{0,8,25},50] (* Harvey P. Dale, Sep 06 2019 *)
-
a(n)=n*(9*n+7)/2 \\ Charles R Greathouse IV, Jun 17 2017
-
[n*(9*n+7)/2 for n in (0..50)] # G. C. Greubel, May 24 2019
A022266
a(n) = n*(9*n - 1)/2.
Original entry on oeis.org
0, 4, 17, 39, 70, 110, 159, 217, 284, 360, 445, 539, 642, 754, 875, 1005, 1144, 1292, 1449, 1615, 1790, 1974, 2167, 2369, 2580, 2800, 3029, 3267, 3514, 3770, 4035, 4309, 4592, 4884, 5185, 5495, 5814, 6142, 6479, 6825, 7180, 7544, 7917, 8299, 8690, 9090, 9499
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf. similar sequences listed in
A022288.
-
[n*(9*n-1)/2 : n in [0..50]]; // Wesley Ivan Hurt, Dec 04 2016
-
[seq(binomial(9*n,2)/9, n=0..37)]; # Zerinvary Lajos, Jan 02 2007
seq(n*(6*n-1)-n*(3*n-1)/2, n=0..37); # Zerinvary Lajos, Jun 12 2007
-
Table[n (9 n - 1)/2, {n, 0, 40}] (* Bruno Berselli, Oct 17 2016 *)
LinearRecurrence[{3,-3,1},{0,4,17},50] (* Harvey P. Dale, Aug 06 2023 *)
-
a(n)=n*(9*n-1)/2 \\ Charles R Greathouse IV, Oct 07 2015
A118729
Rectangular array where row r contains the 8 numbers 4*r^2 - 3*r, 4*r^2 - 2*r, ..., 4*r^2 + 4*r.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 126, 132, 138, 144, 150, 156, 162, 168
Offset: 0
Stuart M. Ellerstein (ellerstein(AT)aol.com), May 21 2006
The array starts, with row r=0, as
r=0: 0 0 0 0 0 0 0 0;
r=1: 1 2 3 4 5 6 7 8;
r=2: 10 12 14 16 18 20 22 24;
r=3: 27 30 33 36 39 42 45 48;
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- LeetCode, 3014. Minimum Number of Pushes to Type Word I.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,1,-2,1).
-
Flatten[Table[4r^2+r(Range[-3,4]),{r,0,6}]] (* or *) LinearRecurrence[ {2,-1,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,1,2},60] (* Harvey P. Dale, Nov 26 2015 *)
Redefined as a rectangular tabf array and description simplified by
R. J. Mathar, Oct 20 2010
Showing 1-10 of 15 results.
Comments