cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 69 results. Next

A081266 Staggered diagonal of triangular spiral in A051682.

Original entry on oeis.org

0, 6, 21, 45, 78, 120, 171, 231, 300, 378, 465, 561, 666, 780, 903, 1035, 1176, 1326, 1485, 1653, 1830, 2016, 2211, 2415, 2628, 2850, 3081, 3321, 3570, 3828, 4095, 4371, 4656, 4950, 5253, 5565, 5886, 6216, 6555, 6903, 7260, 7626, 8001, 8385, 8778, 9180
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Staggered diagonal of triangular spiral in A051682, between (0,4,17) spoke and (0,7,23) spoke.
Binomial transform of (0, 6, 9, 0, 0, 0, ...).
If Y is a fixed 3-subset of a (3n+1)-set X then a(n) is the number of (3n-1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007
Partial sums give A085788. - Leo Tavares, Nov 23 2023

Examples

			a(1)=9*1+0-3=6, a(2)=9*2+6-3=21, a(3)=9*3+21-3=45.
For n=3, a(3) = -0^2+1^2-2^2+3^2-4^2+5^2-6^2+7^2-8^2+9^2 = 45.
		

Crossrefs

Programs

Formula

a(n) = 6*C(n,1) + 9*C(n,2).
a(n) = 3*n*(3*n+1)/2.
G.f.: (6*x+3*x^2)/(1-x)^3.
a(n) = A000217(3*n); a(2*n) = A144314(n). - Reinhard Zumkeller, Sep 17 2008
a(n) = 3*A005449(n). - R. J. Mathar, Mar 27 2009
a(n) = 9*n+a(n-1)-3 for n>0, a(0)=0. - Vincenzo Librandi, Aug 08 2010
a(n) = A218470(9n+5). - Philippe Deléham, Mar 27 2013
a(n) = Sum_{k=0..3n} (-1)^(n+k)*k^2. - Bruno Berselli, Aug 29 2013
E.g.f.: 3*exp(x)*x*(4 + 3*x)/2. - Stefano Spezia, Jun 06 2021
From Amiram Eldar, Aug 11 2022: (Start)
Sum_{n>=1} 1/a(n) = 2 - Pi/(3*sqrt(3)) - log(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(3*sqrt(3)) + 4*log(2)/3 - 2. (End)
From Leo Tavares, Nov 23 2023: (Start)
a(n) = 3*A000217(n) + 3*A000290(n).
a(n) = A003154(n+1) - A133694(n+1). (End)

A081267 Diagonal of triangular spiral in A051682.

Original entry on oeis.org

1, 9, 26, 52, 87, 131, 184, 246, 317, 397, 486, 584, 691, 807, 932, 1066, 1209, 1361, 1522, 1692, 1871, 2059, 2256, 2462, 2677, 2901, 3134, 3376, 3627, 3887, 4156, 4434, 4721, 5017, 5322, 5636, 5959, 6291, 6632, 6982, 7341, 7709, 8086, 8472, 8867, 9271
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Binomial transform of (1, 8, 9, 0, 0, 0, ...).

Crossrefs

Cf. A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.

Programs

Formula

a(n) = C(n, 0) + 8*C(n, 1) + 9*C(n, 2).
a(n) = (9*n^2 + 7*n + 2)/2.
G.f.: (1 + 6*x + 2*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), for n > 2. a(n) = right term in M^n * [1 1 1], where M = the 3 X 3 matrix [1 0 0 / 3 1 0 / 5 3 1]. M^n * [1 1 1] = [1 3n+1 a(n)]. - Gary W. Adamson, Dec 22 2004
a(n) = 9*n + a(n-1) - 1 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = (n+1)*A000326(n+1) - (n)*A000326(n). - Bruno Berselli, Dec 10 2012
a(n) = A050509(n) - A050509(n-1). - Bill McEachen, Nov 01 2020
E.g.f.: exp(x)*(2 + 16*x + 9*x^2)/2. - Stefano Spezia, Dec 25 2022

A081271 Vertical of triangular spiral in A051682.

Original entry on oeis.org

1, 13, 34, 64, 103, 151, 208, 274, 349, 433, 526, 628, 739, 859, 988, 1126, 1273, 1429, 1594, 1768, 1951, 2143, 2344, 2554, 2773, 3001, 3238, 3484, 3739, 4003, 4276, 4558, 4849, 5149, 5458, 5776, 6103, 6439, 6784, 7138, 7501, 7873, 8254, 8644, 9043, 9451
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Lies to the right of the y-axis of the triangle.
Binomial transform of (1, 12, 9, 0, 0, 0, ...).

Crossrefs

Cf. A062741, A283394 (see Crossrefs section).

Programs

Formula

G.f.: (1 + 10*x - 2*x^2)/(1 - x)^3.
a(n) = binomial(n,0) + 12*binomial(n,1) + 9*binomial(n,2).
a(n) = (9*n^2 + 15*n + 2)/2.
a(0) = 1, a(n) = a(n-1) + 9*n + 3 for n > 0 - Gerald McGarvey, Aug 18 2004
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: exp(x)*(1 + 12*x + 9*x^2/2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A210981 A062725 and positive terms of A051682 interleaved.

Original entry on oeis.org

0, 1, 7, 11, 23, 30, 48, 58, 82, 95, 125, 141, 177, 196, 238, 260, 308, 333, 387, 415, 475, 506, 572, 606, 678, 715, 793, 833, 917, 960, 1050, 1096, 1192, 1241, 1343, 1395, 1503, 1558, 1672, 1730, 1850, 1911, 2037, 2101, 2233, 2300, 2438, 2508, 2652, 2725, 2875, 2951, 3107, 3186, 3348
Offset: 0

Views

Author

Omar E. Pol, Aug 03 2012

Keywords

Comments

Vertex number of a square spiral similar to A195160.

Crossrefs

Members of this family are A093005, A210977, A006578, A210978, A181995, this sequence, A210982.

Programs

  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{0,1,7,11,23},70] (* Harvey P. Dale, Jun 29 2023 *)

Formula

G.f.: -x*(1+6*x+2*x^2) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Aug 07 2012
a(n) = ( 18*n^2+14*n-5+(6*n+5)*(-1)^n )/16. - Luce ETIENNE, Oct 14 2014

A244648 Decimal expansion of the sum of the reciprocals of the hendecagonal numbers (A051682).

Original entry on oeis.org

1, 1, 9, 5, 4, 3, 4, 1, 1, 6, 5, 2, 9, 6, 2, 7, 9, 7, 4, 3, 5, 2, 4, 9, 9, 2, 3, 4, 6, 9, 8, 4, 9, 9, 3, 5, 4, 8, 8, 4, 6, 8, 2, 6, 2, 7, 0, 8, 4, 6, 5, 8, 0, 6, 2, 3, 8, 6, 0, 2, 1, 6, 0, 3, 0, 1, 7, 3, 5, 8, 4, 7, 3, 3, 7, 0, 3, 1, 7, 6, 0, 1, 4, 6, 4, 4, 8, 4, 1, 7, 5, 4, 8, 5, 5, 1, 1, 2, 3, 1, 8, 5, 5, 4, 7
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Examples

			1.195434116529627974352499234698499354884682627084658062386021603017...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[2/(9n^2 - 7n), {n, 1 , Infinity}], 10, 111][[1]]

Formula

Sum_{n=1..infinity} 2/(9n^2 - 7n).
Equals (5*log(3) + Pi*cot(2*Pi/9) - 4*cos(2*Pi/9)*log(cos(Pi/18)) + 4*cos(Pi/9)*log(sin(2*Pi/9)) - 4*log(sin(Pi/9))*sin(Pi/18))/7. - Vaclav Kotesovec, Jul 04 2014

A081268 Diagonal of triangular spiral in A051682.

Original entry on oeis.org

1, 12, 32, 61, 99, 146, 202, 267, 341, 424, 516, 617, 727, 846, 974, 1111, 1257, 1412, 1576, 1749, 1931, 2122, 2322, 2531, 2749, 2976, 3212, 3457, 3711, 3974, 4246, 4527, 4817, 5116, 5424, 5741, 6067, 6402, 6746, 7099, 7461, 7832, 8212, 8601, 8999, 9406
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Examples

			a(1) = 9*1 +  1 + 2 = 12.
a(2) = 9*2 + 12 + 2 = 32.
a(3) = 9*3 + 32 + 2 = 61.
		

Crossrefs

Programs

Formula

a(n) = C(n,0) + 11*C(n,1) + 9*C(n,2); binomial transform of (1, 11, 9, 0, 0, 0, ...).
a(n) = (9*n^2 + 13*n + 2)/2.
G.f.: (1 + 9*x - x^2)/(1-x)^3.
a(n) = 9*n + a(n-1) + 2 (with a(0)=1). - Vincenzo Librandi, Aug 08 2010
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: exp(x)*(9*x^2 + 22*x + 2)/2.
a(n) = A064226(n) - 2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A081272 Downward vertical of triangular spiral in A051682.

Original entry on oeis.org

1, 25, 85, 181, 313, 481, 685, 925, 1201, 1513, 1861, 2245, 2665, 3121, 3613, 4141, 4705, 5305, 5941, 6613, 7321, 8065, 8845, 9661, 10513, 11401, 12325, 13285, 14281, 15313, 16381, 17485, 18625, 19801, 21013, 22261, 23545, 24865, 26221, 27613, 29041, 30505
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Reflection of A081271 in the horizontal A051682.
Binomial transform of (1, 24, 36, 0, 0, 0, .....).
One of the six verticals of a triangular spiral which starts with 1 (see the link). Other verticals are A060544, A081589, A080855, A157889, A038764. - Yuriy Sibirmovsky, Sep 18 2016.

Crossrefs

Programs

  • Mathematica
    Table[n^2 + (n + 1)^2, {n, 0, 300, 3}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 25, 85}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *)
    Table[n^2 + (n + 1)^2, {n, 0, 150, 3}] (* Vincenzo Librandi, Aug 07 2013 *)
  • PARI
    x='x+O('x^99); Vec((1+22*x+13*x^2)/(1-x)^3) \\ Altug Alkan, Sep 18 2016

Formula

a(n) = C(n, 0) + 24*C(n, 1) + 36*C(n, 2).
a(n) = 18*n^2 + 6*n + 1.
G.f.: (1 + 22*x + 13*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(1 + 24*x + 18*x^2). - Stefano Spezia, Mar 07 2023

A081270 Diagonal of triangular spiral in A051682.

Original entry on oeis.org

3, 16, 38, 69, 109, 158, 216, 283, 359, 444, 538, 641, 753, 874, 1004, 1143, 1291, 1448, 1614, 1789, 1973, 2166, 2368, 2579, 2799, 3028, 3266, 3513, 3769, 4034, 4308, 4591, 4883, 5184, 5494, 5813, 6141, 6478, 6824, 7179, 7543, 7916, 8298, 8689, 9089, 9498, 9916
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A064226(n) + 2*n.
a(n) = 3*binomial(n,0) + 13*binomial(n,1) + 9*binomial(n,2); binomial transform of (3, 13, 9, 0, 0, 0, ...).
a(n) = (9*n^2 + 17*n + 6)/2.
G.f.: (3 + 7*x - x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 08 2012
E.g.f.: exp(x)*(6 + 26*x + 9*x^2)/2. - Elmo R. Oliveira, Nov 13 2024

A081275 Shallow diagonal of triangular spiral in A051682.

Original entry on oeis.org

1, 31, 97, 199, 337, 511, 721, 967, 1249, 1567, 1921, 2311, 2737, 3199, 3697, 4231, 4801, 5407, 6049, 6727, 7441, 8191, 8977, 9799, 10657, 11551, 12481, 13447, 14449, 15487, 16561, 17671, 18817, 19999, 21217, 22471, 23761, 25087, 26449, 27847, 29281, 30751, 32257
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Reflection of A060544 in the horizontal A051682.
Binomial transform of (1, 30, 36, 0, 0, 0, ...).

Crossrefs

Programs

  • Mathematica
    Table[30Binomial[n,1]+36Binomial[n,2]+1,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{1,31,97},40] (* Harvey P. Dale, Jun 30 2011 *)
    CoefficientList[Series[(1 + 28 x + 7 x^2) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2013 *)
  • PARI
    a(n)=18*n^2+12*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = C(n,0) + 30*C(n,1) + 36*C(n,2).
a(n) = 18*n^2 + 12*n + 1.
G.f.: (1 + 28*x + 7*x^2)/(1-x)^3.
a(0)=1, a(1)=31, a(2)=97, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 30 2011
E.g.f.: exp(x)*(1 + 30*x + 18*x^2). - Elmo R. Oliveira, Nov 13 2024

A280071 Indices of 11-gonal numbers (A051682) that are also centered 11-gonal numbers (A060544).

Original entry on oeis.org

1, 12, 232, 4621, 92181, 1838992, 36687652, 731914041, 14601593161, 291299949172, 5811397390272, 115936647856261, 2312921559734941, 46142494546842552, 920536969377116092, 18364596892995479281, 366371400890532469521, 7309063420917653911132
Offset: 1

Views

Author

Colin Barker, Dec 25 2016

Keywords

Comments

Also positive integers x in the solutions to 9*x^2 - 11*y^2 - 7*x + 11*y - 2 = 0, the corresponding values of y being A280072.

Examples

			12 is in the sequence because the 12th 11-gonal number is 606, which is also the 11th centered 11-gonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{21,-21,1},{1,12,232},20] (* Harvey P. Dale, May 27 2025 *)
  • PARI
    Vec(x*(1 - 9*x + x^2) / ((1 - x)*(1 - 20*x + x^2)) + O(x^30))

Formula

a(n) = (14 + (11-3*sqrt(11))*(10+3*sqrt(11))^n + (10+3*sqrt(11))^(-n)*(11+3*sqrt(11)))/36.
a(n) = 21*a(n-1) - 21*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 - 9*x + x^2) / ((1 - x)*(1 - 20*x + x^2)).
Showing 1-10 of 69 results. Next