cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A038764 a(n) = (9*n^2 + 3*n + 2)/2.

Original entry on oeis.org

1, 7, 22, 46, 79, 121, 172, 232, 301, 379, 466, 562, 667, 781, 904, 1036, 1177, 1327, 1486, 1654, 1831, 2017, 2212, 2416, 2629, 2851, 3082, 3322, 3571, 3829, 4096, 4372, 4657, 4951, 5254, 5566, 5887, 6217, 6556, 6904, 7261, 7627, 8002, 8386, 8779, 9181
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2000

Keywords

Comments

Coefficients of x^2 of certain rook polynomials (for n>=1; see p. 18 of the Riordan paper). - Emeric Deutsch, Mar 08 2004
a(n) is also the least weight of self-conjugate partitions having n+1 different parts such that each part is congruent to 1 modulo 3. The first such self-conjugate partitions, corresponding to a(n) = 0, 1, 2, 3, are 1, 4+3, 7+4+4+4+3, 10+7+7+7+4+4+4+3. - Augustine O. Munagi, Dec 18 2008

References

  • J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.

Crossrefs

Reflection of A060544 in A081272.
Second column of A024462. Also = A064641(n+1, 2).
Shallow diagonal of triangular spiral in A051682.
Partial sums of A122709.

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 7, 22}, 50] (* Paolo Xausa, Jul 03 2025 *)
  • PARI
    a(n)=n*(9*n+3)/2+1 \\ Charles R Greathouse IV, Jun 17 2017
    
  • PARI
    Vec((1 + 2*x)^2 / (1 - x)^3 + O(x^60)) \\ Colin Barker, Jan 22 2018
  • Sage
    a = lambda n: hypergeometric([-n, -2], [1], 3)
    print([simplify(a(n)) for n in range(46)]) # Peter Luschny, Nov 19 2014
    

Formula

a(n) = binomial(n,0) + 6*binomial(n,1) + 9*binomial(n,2).
From Paul Barry, Mar 15 2003: (Start)
G.f.: (1 + 2*x)^2/(1 - x)^3.
Binomial transform of (1, 6, 9, 0, 0, 0, ...). (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Colin Barker, Jan 22 2018
a(n) = a(n-1) + 3*(3*n-1) for n>0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
a(n) = hypergeometric([-n, -2], [1], 3). - Peter Luschny, Nov 19 2014
E.g.f.: exp(x)*(2 + 12*x + 9*x^2)/2. - Stefano Spezia, Mar 07 2023

Extensions

More terms from James Sellers, May 03 2000
Entry revised by N. J. A. Sloane, Jan 23 2018

A198392 a(n) = (6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16 + 1.

Original entry on oeis.org

2, 4, 12, 18, 31, 41, 59, 73, 96, 114, 142, 164, 197, 223, 261, 291, 334, 368, 416, 454, 507, 549, 607, 653, 716, 766, 834, 888, 961, 1019, 1097, 1159, 1242, 1308, 1396, 1466, 1559, 1633, 1731, 1809, 1912, 1994, 2102, 2188, 2301, 2391, 2509, 2603, 2726, 2824, 2952
Offset: 0

Views

Author

Bruno Berselli, Oct 25 2011

Keywords

Comments

For an origin of this sequence, see the triangular spiral illustrated in the Links section.
First bisection gives A117625 (without the initial term).

Crossrefs

Cf. A152832 (by Superseeker).
Cf. sequences related to the triangular spiral: A022266, A022267, A027468, A038764, A045946, A051682, A062708, A062725, A062728, A062741, A064225, A064226, A081266-A081268, A081270-A081272, A081275 [incomplete list].

Programs

  • Magma
    [(6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1: n in [0..50]];
  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{2,4,12,18,31},60] (* Harvey P. Dale, Jun 15 2022 *)
  • PARI
    for(n=0, 50, print1((6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1", "));
    

Formula

G.f.: (2+2*x+4*x^2+2*x^3-x^4)/((1+x)^2*(1-x)^3).
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5).
a(n)-a(-n-1) = A168329(n+1).
a(n)+a(n-1) = A102214(n).
a(2n)-a(2n-1) = A016885(n).
a(2n+1)-a(2n) = A016825(n).

A363080 Number of hexagonal lattice points within a hexagram centered at a lattice point and with outermost vertices at the six lattice points n steps outward from the central point.

Original entry on oeis.org

1, 7, 13, 25, 43, 61, 85, 115, 145, 181, 223, 265, 313, 367, 421, 481, 547, 613, 685, 763, 841, 925, 1015, 1105, 1201, 1303, 1405, 1513, 1627, 1741, 1861, 1987, 2113, 2245, 2383, 2521, 2665, 2815, 2965, 3121, 3283, 3445, 3613, 3787, 3961, 4141, 4327, 4513, 4705, 4903, 5101, 5305, 5515, 5725
Offset: 0

Views

Author

Aaron David Fairbanks, May 17 2023

Keywords

Comments

In contrast, A003154 (the star numbers) counts the hexagonal lattice points within a hexagram centered at a lattice point and with the vertices of the central hexagon at the six lattice points a given number of steps outward from the central point.
Besides the first term, the first differences are given by six times A004396.
A005448 (the centered triangular numbers) counts just the lattice points within one of the two triangles that make up the hexagram.

Examples

			Illustration of initial terms:
.
.                                 o     o
.                   o   o          o o o
.         o o        o o          o o o o
.   o    o o o    o o o o o    o o o o o o o
.         o o        o o          o o o o
.                   o   o          o o o
.                                 o     o
.
.   1      7          13             25
.
		

Crossrefs

Programs

  • Mathematica
    Table[6*Ceiling[n*(n + 1)/3] + 1, {n, 0, 60}] (* Amiram Eldar, Jul 28 2023 *)
  • PARI
    a(n) = 6*ceil(n*(n+1)/3) + 1; \\ Michel Marcus, Jun 14 2024

Formula

a(n) = 6*ceiling(n*(n+1)/3) + 1.
a(n) = 6*A007980(n-1) + 1 for n >= 1.
a(n+1) - a(n) = 6*A004396(n+1).
a(3n) = A081272(n).
G.f.: (1 + 5*x + 5*x^3 + x^4)/((1 - x)^3*(1 + x + x^2)). - Stefano Spezia, Feb 06 2025
Showing 1-3 of 3 results.