cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A081274 Duplicate of A038764.

Original entry on oeis.org

1, 7, 22, 46, 79, 121, 172, 232, 301, 379, 466, 562, 667, 781, 904, 1036, 1177, 1327
Offset: 0

Views

Author

Keywords

A081577 Pascal-(1,2,1) array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 22, 10, 1, 1, 13, 46, 46, 13, 1, 1, 16, 79, 136, 79, 16, 1, 1, 19, 121, 307, 307, 121, 19, 1, 1, 22, 172, 586, 886, 586, 172, 22, 1, 1, 25, 232, 1000, 2086, 2086, 1000, 232, 25, 1, 1, 28, 301, 1576, 4258, 5944, 4258, 1576, 301, 28, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016777, A038764, A081583, A081584. Coefficients of the row polynomials in the Newton basis are given by A013610.
As a number triangle, this is the Riordan array (1/(1-x), x(1+2x)/(1-x)). It has row sums A002605 and diagonal sums A077947. - Paul Barry, Jan 24 2005
All entries are == 1 mod 3. - Roger L. Bagula, Oct 04 2008
Row sums are A002605. - Roger L. Bagula, Dec 09 2008
As a number triangle T, T(2n,n)=A069835(n). - Philippe Deléham, Jan 10 2014

Examples

			Square array begins as:
  1,  1,  1,   1,   1, ... A000012;
  1,  4,  7,  10,  13, ... A016777;
  1,  7, 22,  46,  79, ... A038764;
  1, 10, 46, 136, 307, ... A081583;
  1, 13, 79, 307, 886, ... A081584;
From _Roger L. Bagula_, Dec 09 2008: (Start)
As a triangle this begins:
  1;
  1,  1;
  1,  4,   1;
  1,  7,   7,    1;
  1, 10,  22,   10,    1;
  1, 13,  46,   46,   13,    1;
  1, 16,  79,  136,   79,   16,    1;
  1, 19, 121,  307,  307,  121,   19,    1;
  1, 22, 172,  586,  886,  586,  172,   22,   1;
  1, 25, 232, 1000, 2086, 2086, 1000,  232,  25,  1;
  1, 28, 301, 1576, 4258, 5944, 4258, 1576, 301, 28, 1; (End)
		

Crossrefs

Cf. Pascal-(1,a,1) array: A123562 (a=-3), A098593 (=-2), A000012 (a=-1), A007318 (a=0), A008288 (a=1), A081577(a=2), A081578 (a=3), A081579 (a=4), A081580 (a=5), A081581 (a=6), A081582 (a=7), A143683(a=8). [From Roger L. Bagula, Dec 09 2008], Philippe Deléham, Jan 10 2014, Mar 16 2014.

Programs

  • Haskell
    a081577 n k = a081577_tabl !! n !! k
    a081577_row n = a081577_tabl !! n
    a081577_tabl = map fst $ iterate
        (\(us, vs) -> (vs, zipWith (+) (map (* 2) ([0] ++ us ++ [0])) $
                           zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
    -- Reinhard Zumkeller, Mar 16 2014
    
  • Magma
    A081577:= func< n,k | (&+[Binomial(k,j)*Binomial(n-j,k)*2^j: j in [0..n-k]]) >;
    [A081577(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 25 2021
    
  • Mathematica
    a[0]={1}; a[1]={1, 1}; a[n_]:= a[n]= 2*Join[{0}, a[n-2], {0}] + Join[{0}, a[n-1]] + Join[a[n-1], {0}]; Table[a[n], {n,0,10}]//Flatten (* Roger L. Bagula, Dec 09 2008 *)
    Table[Hypergeometric2F1[-k, k-n, 1, 3], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 3).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 25 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 2*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+2*x)^k/(1-x)^(k+1).
G.f.: 1/(1-x-y-2*x*y). - Ralf Stephan, Apr 28 2004
T(n,k) = Sum_{j=0..n} binomial(k,j-k)*binomial(n+k-j,k)*2^(j-k). - Paul Barry, Oct 23 2006
a(n) = 2*{0, a(n-2), 0} + {0, a(n-1)} + {a(n-1), 0}. - Roger L. Bagula, Dec 09 2008
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 3). - Jean-François Alcover, May 24 2013
The e.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(3*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 6*x + 9*x^2/2) = 1 + 7*x + 22*x^2/2! + 46*x^3/3! + 79*x^4/4! + 121*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n,k) = A002605(n). - G. C. Greubel, May 25 2021

A027468 9 times the triangular numbers A000217.

Original entry on oeis.org

0, 9, 27, 54, 90, 135, 189, 252, 324, 405, 495, 594, 702, 819, 945, 1080, 1224, 1377, 1539, 1710, 1890, 2079, 2277, 2484, 2700, 2925, 3159, 3402, 3654, 3915, 4185, 4464, 4752, 5049, 5355, 5670, 5994, 6327, 6669, 7020, 7380, 7749, 8127, 8514, 8910, 9315
Offset: 0

Views

Author

Keywords

Comments

Staggered diagonal of triangular spiral in A051682, between (0,1,11) spoke and (0,8,25) spoke. - Paul Barry, Mar 15 2003
Number of permutations of n distinct letters (ABCD...) each of which appears thrice with n-2 fixed points. - Zerinvary Lajos, Oct 15 2006
Number of n permutations (n>=2) of 4 objects u, v, z, x with repetition allowed, containing n-2=0 u's. Example: if n=2 then n-2 =zero (0) u, a(1)=9 because we have vv, zz, xx, vx, xv, zx, xz, vz, zv. A027465 formatted as a triangular array: diagonal: 9, 27, 54, 90, 135, 189, 252, 324, ... . - Zerinvary Lajos, Aug 06 2008
a(n) is also the least weight of self-conjugate partitions having n different parts such that each part is a multiple of 3. - Augustine O. Munagi, Dec 18 2008
Also sequence found by reading the line from 0, in the direction 0, 9, ..., and the same line from 0, in the direction 0, 27, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Axis perpendicular to A195147 in the same spiral. - Omar E. Pol, Sep 18 2011
Sum of the numbers from 4*n to 5*n. - Wesley Ivan Hurt, Nov 01 2014

Examples

			The first such self-conjugate partitions, corresponding to a(n)=1,2,3,4 are 3+3+3, 6+6+6+3+3+3, 9+9+9+6+6+6+3+3+3, 12+12+12+9+9+9+6+6+6+3+3+3. - _Augustine O. Munagi_, Dec 18 2008
		

Crossrefs

Programs

  • Magma
    [9*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Dec 29 2012
    
  • Maple
    [seq(9*binomial(n+1,2), n=0..50)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    Table[(9/2)*n*(n+1), {n,0,50}] (* G. C. Greubel, Aug 22 2017 *)
  • PARI
    a(n)=9*n*(n+1)/2
    
  • Sage
    [9*binomial(n+1, 2) for n in (0..50)] # G. C. Greubel, May 20 2021

Formula

Numerators of sequence a[n, n-2] in (a[i, j])^2 where a[i, j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
a(n) = (9/2)*n*(n+1).
a(n) = 9*C(n, 1) + 9*C(n, 2) (binomial transform of (0, 9, 9, 0, 0, ...)). - Paul Barry, Mar 15 2003
G.f.: 9*x/(1-x)^3.
a(-1-n) = a(n).
a(n) = 9*C(n+1,2), n>=0. - Zerinvary Lajos, Aug 06 2008
a(n) = a(n-1) + 9*n (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
a(n) = A060544(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A218470(9*n+8). - Philippe Deléham, Mar 27 2013
E.g.f.: (9/2)*x*(x+2)*exp(x). - G. C. Greubel, Aug 22 2017
a(n) = A060544(n+1) - 1. See Centroid Triangles illustration. - Leo Tavares, Dec 27 2021
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 2/9. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(9/(2*Pi))*cos(sqrt(17)*Pi/6).
Product_{n>=1} (1 + 1/a(n)) = 9*sqrt(3)/(4*Pi). (End)

Extensions

More terms from Patrick De Geest, Oct 15 1999

A298033 Coordination sequence of the Dual(3.4.6.4) tiling with respect to a hexavalent node.

Original entry on oeis.org

1, 6, 12, 24, 30, 42, 48, 60, 66, 78, 84, 96, 102, 114, 120, 132, 138, 150, 156, 168, 174, 186, 192, 204, 210, 222, 228, 240, 246, 258, 264, 276, 282, 294, 300, 312, 318, 330, 336, 348, 354, 366, 372, 384, 390, 402, 408, 420, 426, 438, 444, 456, 462, 474, 480, 492, 498, 510, 516, 528, 534, 546, 552
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018, corrected Jan 24 2018

Keywords

Comments

Also known as the mta net.
This is one of the Laves tilings.

Crossrefs

List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Cf. A008574, A038764 (partial sums), A298029 (coordination sequence for a trivalent node), A298031 (coordination sequence for a tetravalent node).

Programs

  • Maple
    f6:=proc(n) if n=0 then 1 elif (n mod 2) = 0 then 9*n-6 else 9*n-3; fi; end;
    [seq(f6(n),n=0..80)];
  • Mathematica
    Join[{1}, LinearRecurrence[{1, 1, -1}, {6, 12, 24}, 62]] (* Jean-François Alcover, Apr 23 2018 *)
  • PARI
    Vec((1 + 5*x + 5*x^2 + 7*x^3) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Jan 25 2018
    
  • PARI
    apply( {A298033(n)=if(n,n*3\/2*6-6,1)}, [0..66]) \\ M. F. Hasler, Jan 11 2022

Formula

Theorem: For n>0, a(n) = 9*n-6 if n is even, a(n) = 9*n-3 if n is odd.
The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. The subgraph H is shown above in the links.
G.f.: (1 + 5*x + 5*x^2 + 7*x^3) / ((1 - x)*(1 - x^2)).
First differences are 1, 5, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, ...
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. - Colin Barker, Jan 25 2018
a(n) = 6*floor((3n-1)/2) for n > 0. - M. F. Hasler, Jan 11 2022

A064641 Unidirectional 'Delannoy' variation of the Boustrophedon transform applied to all 1's sequence: construct an array in which the first element of each row is 1 and subsequent entries are given by T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k) + T(n-2,k-1). The last number in row n gives a(n).

Original entry on oeis.org

1, 2, 7, 29, 133, 650, 3319, 17498, 94525, 520508, 2910895, 16487795, 94393105, 545337200, 3175320607, 18615098837, 109783526821, 650884962908, 3877184797783, 23193307022861, 139271612505361, 839192166392276, 5072534905324615, 30749397292689194
Offset: 0

Views

Author

Floor van Lamoen, Oct 03 2001

Keywords

Comments

Also the number of paths from (0,0) to (n,n) not rising above y=x, using steps (1,0), (0,1), (1,1) and (2,1). For example, the 7 paths to (2,2) are dd, den, end, enen, Dn, eenn and edn, where e=(1,0), n=(0,1), d=(1,1) and D=(2,1). - Brian Drake, Aug 01 2007
For another interpretation as the number of walks of a certain type, see A223092 and the link below. - N. J. A. Sloane, Mar 29 2013
Hankel transform is 3^C(n+1,2). - Paul Barry, Jan 26 2009

Examples

			The array begins
        1
      1   2
    1   5   7
  1   8  22  29
G.f. = 1 + 2*x + 7*x^3 + 29*x^4 + 133*x^5 + 650*x^6 + 3319*x^7 + ...
		

Crossrefs

Delannoy numbers: A008288, table: A064642. Cf. A038764, A223092.
Row sums of A201159.

Programs

  • Maple
    A:= series( (1-x-sqrt(1-6*x-3*x^2)) / (2*x*(1+x)),x, 21): seq(coeff(A,x,i), i=0..20); # Brian Drake, Aug 01 2007
  • Mathematica
    Table[SeriesCoefficient[(1-x-Sqrt[1-6*x-3*x^2])/(2*x*(1+x)),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
  • Maxima
    a(n):=sum(binomial(n+i,n)*sum(binomial(j,-n+2*j-i-2)*binomial(n+1,j),j,0,n+1),i,0,n)/(n+1); /* Vladimir Kruchinin, May 12 2011 */
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x*(1-x)/(1+x+x^2)+O(x^(n+2))),n+1)) /* Paul Barry */
    

Formula

G.f.: (1-x-sqrt(1-6x-3x^2)) / (2x(1+x)). - Brian Drake, Aug 01 2007
G.f.: 1/(1-2x-3x^2/(1-3x-3x^2/(1-3x-3x^2/(1-3x-3x^2/(1-.... (continued fraction). - Paul Barry, Jan 26 2009
a(n) = sum(i=0..n, binomial(n+i,n)*sum(j=0..n+1, binomial(j,-n+2*j-i-2)*binomial(n+1,j)))/(n+1). - Vladimir Kruchinin, May 12 2011
Recurrence: (n+1)*a(n) = (5*n-4)*a(n-1) + 9*(n-1)*a(n-2) + 3*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ 3*(sqrt(6)+sqrt(2))*(3+2*sqrt(3))^n/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 13 2012
G.f.: 1 / (1 - x - (x+x^2) / (1 - x - (x+x^2) / ... )) (continued fraction). - Michael Somos, Mar 30 2014
0 = a(n)*(+9*a(n+1) + 54*a(n+2) + 33*a(n+3) - 12*a(n+4)) + a(n+1)*(+78*a(n+2) + 60*a(n+3) - 27*a(n+4)) + a(n+2)*(+36*a(n+2) + 34*a(n+3) - 14*a(n+4)) + a(n+3)*(+4*a(n+3) + a(n+4)) for all n >= 0. - Michael Somos, Nov 05 2014
a(n) = (-1)^n * (n+1) + Sum_{k=0..n-1} (a(k) + (-1)^k) * (a(n-1-k) + (-1)^(n-1-k)). - Seiichi Manyama, Jul 18 2025

A080855 a(n) = (9*n^2 - 3*n + 2)/2.

Original entry on oeis.org

1, 4, 16, 37, 67, 106, 154, 211, 277, 352, 436, 529, 631, 742, 862, 991, 1129, 1276, 1432, 1597, 1771, 1954, 2146, 2347, 2557, 2776, 3004, 3241, 3487, 3742, 4006, 4279, 4561, 4852, 5152, 5461, 5779, 6106, 6442, 6787, 7141, 7504, 7876, 8257, 8647, 9046
Offset: 0

Views

Author

Paul Barry, Feb 23 2003

Keywords

Comments

The old definition of this sequence was "Generalized polygonal numbers".
Row T(3,n) of A080853.
Equals binomial transform of [1, 3, 9, 0, 0, 0, ...] - Gary W. Adamson, Apr 30 2008
a(n) is also the least weight of self-conjugate partitions having n different parts such that each part is congruent to 2 modulo 3. The first such self-conjugate partitions, corresponding to a(n)=1,2,3,4, are 2+2, 5+5+2+2+2, 8+8+5+5+5+2+2+2, 11+11+8+8+8+5+5+5+2+2+2. - Augustine O. Munagi, Dec 18 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=3, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 3, a(n-1) = -coeff(charpoly(A,x), x^(n-2)). - Milan Janjic, Jan 27 2010

Crossrefs

Cf. A283394 (see Crossrefs section).

Programs

  • GAP
    List([0..50],n->(9*n^2-3*n+2)/2); # Muniru A Asiru, Nov 02 2018
  • Magma
    [(9*n^2 - 3*n +2)/2: n in [0..50]]; // G. C. Greubel, Nov 02 2018
    
  • Maple
    seq((9*n^2-3*n+2)/2,n=0..50); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    s = 1; lst = {s}; Do[s += n + 2; AppendTo[lst, s], {n, 1, 500, 9}]; lst (* Zerinvary Lajos, Jul 11 2009 *)
    Table[(9n^2-3n+2)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1}, {1,4,16}, 50] (* Harvey P. Dale, Jul 24 2013 *)
  • PARI
    a(n)=binomial(3*n,2)+1 \\ Charles R Greathouse IV, Oct 07 2015
    

Formula

G.f.: (1 + x + 7*x^2)/(1 - x)^3.
a(n) = 9*n + a(n-1) - 6 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = n*A005448(n+1) - (n-1)*A005448(n), with A005448(0)=1. - Bruno Berselli, Jan 15 2013
a(0)=1, a(1)=4, a(2)=16; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jul 24 2013
a(n) = A152947(3*n+1). - Franck Maminirina Ramaharo, Jan 10 2018
E.g.f.: (2 + 6*x + 9*x^2)*exp(x)/2. - G. C. Greubel, Nov 02 2018
From Leo Tavares, Feb 20 2022: (Start)
a(n) = A003215(n-1) + 3*A000217(n). See Hexagonal Tri-Rays illustration in links.
a(n) = A227776(n) - 3*A000217(n). (End)

Extensions

Definition replaced with the closed form by Bruno Berselli, Jan 15 2013

A214230 Sum of the eight nearest neighbors of n in a right triangular type-1 spiral with positive integers.

Original entry on oeis.org

53, 88, 78, 125, 85, 84, 125, 97, 108, 143, 223, 168, 158, 169, 201, 284, 208, 183, 179, 187, 210, 281, 226, 219, 227, 235, 261, 314, 430, 339, 311, 310, 318, 326, 346, 396, 515, 403, 360, 347, 355, 363, 371, 379, 411, 509, 427, 411, 419, 427, 435, 443, 451, 486, 557
Offset: 1

Views

Author

Alex Ratushnyak, Jul 08 2012

Keywords

Comments

Right triangular type-1 spiral implements the sequence Up, Right-down, Left.
Right triangular type-2 spiral (A214251): Left, Up, Right-down.
Right triangular type-3 spiral (A214252): Right-down, Left, Up.
A140064 -- rightwards from 1: 3,14,34...
A064225 -- leftwards from 1: 8,24,49...
A117625 -- upwards from 1: 2,12,31...
A006137 -- downwards from 1: 6,20,43...
A038764 -- left-down from 1: 7,22,46...
A081267 -- left-up from 1: 9,26,52...
A081589 -- right-up from 1: 13, 61, 145...
9*x^2/2 - 19*x/2 + 6 -- right-down from 1: 5,18,40...

Examples

			Right triangular spiral begins:
56
55  57
54  29  58
53  28  30  59
52  27  11  31  60
51  26  10  12  32  61
50  25   9   2  13  33  62
49  24   8   1   3  14  34  63
48  23   7   6   5   4  15  35  64
47  22  21  20  19  18  17  16  36  65
46  45  44  43  42  41  40  39  38  37  66
78  77  76  75  74  73  72  71  70  69  68  67
The eight nearest neighbors of 3 are 1, 2, 13, 33, 14, 4, 5, 6. Their sum is a(3)=78.
		

Crossrefs

Programs

  • Python
    SIZE=29  # must be odd
    grid = [0] * (SIZE*SIZE)
    saveX = [0]* (SIZE*SIZE)
    saveY = [0]* (SIZE*SIZE)
    saveX[1] = saveY[1] = posX = posY = SIZE//2
    grid[posY*SIZE+posX]=1
    n = 2
    def walk(stepX,stepY,chkX,chkY):
      global posX, posY, n
      while 1:
        posX+=stepX
        posY+=stepY
        grid[posY*SIZE+posX]=n
        saveX[n]=posX
        saveY[n]=posY
        n+=1
        if posY==0 or grid[(posY+chkY)*SIZE+posX+chkX]==0:
            return
    while 1:
        walk(0, -1,  1,  1)    # up
        if posY==0:
            break
        walk( 1, 1, -1,  0)    # right-down
        walk(-1, 0,  0, -1)    # left
    for n in range(1,92):
        posX = saveX[n]
        posY = saveY[n]
        k = grid[(posY-1)*SIZE+posX] + grid[(posY+1)*SIZE+posX]
        k+= grid[(posY-1)*SIZE+posX-1] + grid[(posY-1)*SIZE+posX+1]
        k+= grid[(posY+1)*SIZE+posX-1] + grid[(posY+1)*SIZE+posX+1]
        k+= grid[posY*SIZE+posX-1] + grid[posY*SIZE+posX+1]
        print(k, end=', ')

A024462 Triangle T(n,k) read by rows, arising in enumeration of catafusenes.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 7, 3, 1, 8, 22, 24, 9, 1, 11, 46, 90, 81, 27, 1, 14, 79, 228, 351, 270, 81, 1, 17, 121, 465, 1035, 1323, 891, 243, 1, 20, 172, 828, 2430, 4428, 4860, 2916, 729, 1, 23, 232, 1344, 4914, 11718, 18144, 17496, 9477, 2187, 1, 26, 301, 2040, 8946, 26460, 53298, 71928, 61965, 30618, 6561
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2000

Keywords

Examples

			Triangle begins (rows indexed by n >= 0 and columns by k >= 0):
   1;
   1,  1;
   1,  2,   1;
   1,  5,   7,   3;
   1,  8,  22,  24,    9;
   1, 11,  46,  90,   81,   27;
   1, 14,  79, 228,  351,  270,   81;
   1, 17, 121, 465, 1035, 1323,  891, 243;
   1, 20, 172, 828, 2430, 4428, 4860, 2916, 729;
   ...
		

Crossrefs

Cf. A038763.
Left-edge columns (essentially) include A016789 and A038764. Right-edge diagonal columns (essentially) include A000244, A038765, and A081892. Row sums are (essentially) A000302.

Programs

  • Maple
    ## The following Maple program gives the Taylor expansion of the bivariate g.f. of T(n,k) in powers of x:
    T := proc (x, y) 1+x*(y+1)+x^2*(y+1)^2/(1-x-3*y*x) end proc;
    expand(taylor(T(x, y), x = 0, 20)); ## Petros Hadjicostas, May 27 2019
  • Mathematica
    T[n_, 0]:= 1; T[n_, k_]:= If[k<0 || k>n, 0, If[n==1 && k==1, 1, If[n==2 && k==1, 2, If[k==n && n>=2, 3^(n-2), 3*T[n-1, k-1] + T[n-1, k]]]]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 30 2019 *)
  • PARI
    T(n,k)=if(n<0||k<0||k>n,0,if(n<3,[[1],[1,1],[1,2,1]][n+1][k+1],3*T(n-1,k-1)+T(n-1,k))) \\ Ralf Stephan, Jan 25 2005
    
  • Sage
    def T(n, k):
        if (k<0 and k>n): return 0
        elif (k==0): return 1
        elif (n==k==1): return 1
        elif (n==2 and k==1): return 2
        elif (n>=2 and k==n): return 3^(n-2)
        else: return 3*T(n-1, k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 30 2019

Formula

T(n, k) = 3 * T(n-1, k-1) + T(n-1, k), starting with [1], [1, 1], [1, 2, 1].
From Petros Hadjicostas, May 27 2019: (Start)
T(n, k) = (n-2)!/(k! * (n-k)!) * (9*n*(n-1) - 4*k*(3*n-k-2)) * 3^(k-2) for n >= max(k, 2) and k >= 0. (See the top formula of p. 767 in Cyvin et al. (1996).)
Bivariate g.f.: Sum_{n, k >= 0} T(n, k) * x^n * y^k = 1 + x * (1 + y) + x^2 * (1 + y)^2/(1 - x - 3 * x * y).
(End)

Extensions

More terms from James Sellers, May 03 2000
Edited by Ralf Stephan, Jan 25 2005

A102214 Expansion of (1 + 4*x + 4*x^2)/((1+x)*(1-x)^3).

Original entry on oeis.org

1, 6, 16, 30, 49, 72, 100, 132, 169, 210, 256, 306, 361, 420, 484, 552, 625, 702, 784, 870, 961, 1056, 1156, 1260, 1369, 1482, 1600, 1722, 1849, 1980, 2116, 2256, 2401, 2550, 2704, 2862, 3025, 3192, 3364, 3540, 3721, 3906, 4096, 4290, 4489, 4692, 4900
Offset: 0

Views

Author

Creighton Dement, Feb 17 2005

Keywords

Comments

A floretion-generated sequence.
a(n) gives the number of triples (x,y,x+y) with positive integers satisfying x < y and x + y <= 3*n. - Marcus Schmidt (marcus-schmidt(AT)gmx.net), Jan 13 2006
Number of different partitions of numbers x + y = z such that {x,y,z} are integers {1,2,3,...,3n} and z > y > x. - Artur Jasinski, Feb 09 2010
Second bisection preceded by zero is A152743. - Bruno Berselli, Oct 25 2011
a(n) has no final digit 3, 7, 8. - Paul Curtz, Mar 04 2020
One odd followed by three evens.
From Paul Curtz, Mar 06 2020: (Start)
b(n) = 0, 1, 6, 16, 30, 49, ... = 0, a(n).
( 25, 12, 4, 0, 1, 6, 16, 30, ...
-13, -8, -4 1, 5, 10, 14, 19, ...
5, 4, 5, 4, 5, 4, 5, 4, ... .)
b(-n) = 0, 4, 12, 25, 42, 64, 90, 121, ... .
A154589(n) are in the main diagonal of b(n) and b(-n). (End)

Crossrefs

Programs

  • Magma
    [(6*n*(3*n+4)+(-1)^n+7)/8: n in [0..60]]; // Vincenzo Librandi, Oct 26 2011
    
  • Mathematica
    aa = {}; Do[i = 0; Do[Do[Do[If[x + y == z, i = i + 1], {x, y + 1, 3 n}], {y, 1, 3 n}], {z, 1, 3 n}]; AppendTo[aa, i], {n, 1, 20}]; aa (* Artur Jasinski, Feb 09 2010 *)
  • PARI
    a(n)=(6*n*(3*n+4)+(-1)^n+7)/8 \\ Charles R Greathouse IV, Apr 16 2020

Formula

G.f.: -(4*x^2 + 4*x + 1)/((x+1)*(x-1)^3) = (1+2*x)^2/((1+x)*(1-x)^3).
a(2n) = A016778(n) = (3n+1)^2.
a(n) + a(n+1) = A038764(n+1).
a(n) = floor( (3*n+2)/2 ) * ceiling( (3*n+2)/2 ). - Marcus Schmidt (marcus-schmidt(AT)gmx.net), Jan 13 2006
a(n) = (6*n*(3*n+4) + (-1)^n+7)/8. - Bruno Berselli, Oct 25 2011
a(n) = A198392(n) + A198392(n-1). - Bruno Berselli, Nov 06 2011
From Paul Curtz, Mar 04 2020: (Start)
a(n) = A006578(n) + A001859(n) + A077043(n+1).
a(n) = A274221(2+2*n).
a(20+n) - a(n) = 30*(32+3*n).
a(1+2*n) = 3*(1+n)*(2+3*n).
a(n) = A047237(n) * A047251(n).
a(n) = A001651(n+1) * A032766(n).(End)
E.g.f.: ((4 + 21*x + 9*x^2)*cosh(x) + 3*(1 + 7*x + 3*x^2)*sinh(x))/4. - Stefano Spezia, Mar 04 2020

Extensions

Definition rewritten by Bruno Berselli, Oct 25 2011

A283394 a(n) = 3*n*(3*n + 7)/2 + 4.

Original entry on oeis.org

4, 19, 43, 76, 118, 169, 229, 298, 376, 463, 559, 664, 778, 901, 1033, 1174, 1324, 1483, 1651, 1828, 2014, 2209, 2413, 2626, 2848, 3079, 3319, 3568, 3826, 4093, 4369, 4654, 4948, 5251, 5563, 5884, 6214, 6553, 6901, 7258, 7624, 7999, 8383, 8776, 9178, 9589, 10009
Offset: 0

Views

Author

Bruno Berselli, Mar 23 2017

Keywords

Comments

Sum_{k = 0..n} (3*k + r)^3 is divisible by 3*n*(3*n + 2*r + 3)/2 + r^2: the sequence corresponds to the case r = 2 of this formula (other cases are listed in Crossrefs section).
Also, Sum_{k = 0..n} (3*k + 2)^3 / a(n) gives 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, 222, ... (A005449).
a(n) is even if n belongs to A014601. No term is divisible by 3, 5, 7 and 11.

Crossrefs

Sequences with formula 3*n*(3*n + 2*r + 3)/2 + r^2: A038764 (r=-1), A027468 (r=0), A081271 (r=1), this sequence (r=2), A027468 (r=3; offset: -1), A080855 (r=4; offset: -2).

Programs

  • Magma
    [3*n*(3*n+7)/2+4: n in [0..50]];
    
  • Mathematica
    Table[3 n (3 n + 7)/2 + 4, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{4,19,43},50] (* Harvey P. Dale, Mar 02 2019 *)
  • Maxima
    makelist(3*n*(3*n+7)/2+4, n, 0, 50);
    
  • PARI
    a(n) = 3*n*(3*n + 7)/2 + 4; \\ Indranil Ghosh, Mar 24 2017
  • Python
    [3*n*(3*n+7)/2+4 for n in range(50)]
    
  • Sage
    [3*n*(3*n+7)/2+4 for n in range(50)]
    

Formula

O.g.f.: (4 + 7*x - 2*x^2)/(1 - x)^3.
E.g.f.: (8 + 30*x + 9*x^2)*exp(x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A081271(-n-2).
a(n) = 3*A095794(n+1) + 1.
a(n) = A034856(3*n+2) = A101881(6*n+2) = A165157(6*n+3) = A186349(6*n+3).
The inverse binomial transform yields 4, 15, 9, 0 (0 continued), therefore:
a(n) = 4*binomial(n,0) + 15*binomial(n,1) + 9*binomial(n,2).
Showing 1-10 of 15 results. Next