A298034 Partial sums of A298033.
1, 7, 19, 43, 73, 115, 163, 223, 289, 367, 451, 547, 649, 763, 883, 1015, 1153, 1303, 1459, 1627, 1801, 1987, 2179, 2383, 2593, 2815, 3043, 3283, 3529, 3787, 4051, 4327, 4609, 4903, 5203, 5515, 5833, 6163, 6499, 6847, 7201, 7567, 7939, 8323, 8713, 9115, 9523, 9943, 10369, 10807, 11251, 11707
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Cf. A298033.
Programs
-
PARI
Vec((1 + 5*x + 5*x^2 + 7*x^3) / ((1 - x)^3*(1 + x)) + O(x^50)) \\ Colin Barker, Jan 25 2018
Formula
G.f.: (1 + 5*x + 5*x^2 + 7*x^3) / ((1 - x)^3*(1 + x)).
From Colin Barker, Jan 25 2018: (Start)
a(n) = (9*n^2 + 2) / 2 for n even.
a(n) = (9*n^2 + 5) / 2 for n odd.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>3. (End)
a(4*k+r) = 36*k*(2*k + r) + a(r) for r = 0..3. Example: if n=29 then k=7 and r=1, hence a(29) = 36*7*(2*7 + 1) + 7 = 3787. - Bruno Berselli, Jan 25 2018
Comments