Sergey Pavlov has authored 11 sequences. Here are the ten most recent ones:
A330673
The possible v-factors for any A202018(k) (while A202018(k) = v * w, v and w are integers, w >= v >= 41, v = w iff w = 41, all such v-factors form the set V).
Original entry on oeis.org
41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 163, 167, 173, 179, 197, 199, 223, 227, 251, 263, 281, 307, 313, 347, 359, 367, 373, 379, 383, 397, 409, 419, 421, 439, 457, 461, 487, 499, 503, 523, 547, 563, 577, 593, 607, 641, 647, 653, 661, 673, 677, 691, 701, 709, 733
Offset: 0
Let i = 3, t = 1, j = -1. Then v(i,t,j) = m(j) * i^2 + b + ja = 41 * 3^2 + 4 - 6 = 41 * 9 - 2 = 367, and 367 is a term of a(n).
We could find all terms of a(n) v < 10^n and then all Euler primes p < 10^(2n) (for n > 1, number of all numbers m such that are terms of A202018 (and any m < 10^(2n)) is 10^n; trivial).
Let 2n = 10; it's easy to establish that, while i > 49, any v(i,t,j)^2 > 10^10; thus, we can use 0 < i < 50 to find all numbers v < 10^5. While m is a term of A202018, m < 10^10, m is composite iff there is at least one v such that m == 0 (mod v); otherwise, m is prime. We could easily remove all "false" numbers v that cannot be divisors of any m. Let p' be a regular prime (p' is a term of A000040, but not of a(n)) such that any 3p' < UB(i); in our case, any 3p' < 50. Thus, we could try any v with p' = {2,3,5,7,11,13}; if v == 0 (mod p'), it is "false"; otherwise, there is at least one m < 10^10 such that m == 0 (mod v).
Original entry on oeis.org
276, 306, 396, 564, 660, 696, 780, 828, 888, 966, 996, 1074, 1086, 1098
Offset: 1
Since 276 is the first term of A131884, the number is in the sequence. But 131884(4) = 552 is not, because A131884(4) = 2 * A131884(1) = 2 * 276.
Original entry on oeis.org
276, 564, 660, 966, 1074, 1134, 1464, 1476, 1488, 1512, 1560, 1578, 1632, 1734, 1920, 1992, 2232, 2340, 2360, 2514, 2664, 2712, 2982, 3270, 3366, 3408, 3432, 3564, 3678, 3774, 3876, 3906, 4116, 4224, 4290, 4350, 4380, 4788, 4800, 4842
Offset: 1
Since 276 is the first term of A216072, the number is in the sequence. But A216072(2) = 552 is not, because A216072(2) = 2 * A216072(1) = 2 * 276.
A280428
a(n) = 1729*n^3.
Original entry on oeis.org
1729, 13832, 46683, 110656, 216125, 373464, 593047, 885248, 1260441, 1729000, 2301299, 2987712, 3798613, 4744376, 5835375, 7081984, 8494577, 10083528, 11859211, 13832000, 16012269, 18410392, 21036743, 23901696, 27015625, 30388904, 34031907, 37955008, 42168581, 46683000
Offset: 1
For n = 11, a(11) = 11^3 * 1729 = 2301299 and a(11) = A001235(67).
A281424
Numbers k such that 16*(10^k - 1)/3 + 1 is prime.
Original entry on oeis.org
6, 23, 65, 82, 108, 188, 300, 342, 401, 584, 1570, 4119, 10030, 24870, 34710
Offset: 1
For k = a(1) = 6, 16*(10^6 - 1)/3 + 1 = 5333329 and 16*(10^6 - 1)/3 + 1 is prime.
-
Select[Range@ 3000, PrimeQ[16 (10^# - 1)/3 + 1] &] (* Michael De Vlieger, Jan 23 2017 *)
-
from sympy import isprime
def afind(limit, startk=1):
pow10 = 10**startk
for k in range(startk, limit+1):
if isprime(16*(pow10 - 1)//3 + 1): print(k, end=", ")
pow10 *= 10
afind(600) # Michael S. Branicky, Aug 17 2021
A280828
Numbers k of the form 2*10^m + 2 such that 10^k + 9 is prime.
Original entry on oeis.org
For n=1, a(1)=4 and 10^4 + 9 is prime.
A280427
a(n) is a prime, such that a(n) = p^d-2 where p is a prime and d is the number of digits of p.
Original entry on oeis.org
3, 5, 167, 359, 839, 1367, 1847, 2207, 3719, 5039, 7919, 1295027, 3442949, 9393929, 13997519, 21253931, 49430861, 84604517, 95443991, 237176657, 329939369, 384240581, 487443401, 633839777, 904231061, 1078193566319, 1427186233199, 1556727840719, 1985193642959
Offset: 1
If p=5, then d=1 and a(1)=3; if p=7, then d=1 and a(2)=5; if p=13, then d=2 and a(3)=167; etc.
-
Select[Array[#^IntegerLength@ # - 2 &@ Prime@ # &, 200], PrimeQ] (* Michael De Vlieger, Jan 03 2017 *)
Original entry on oeis.org
1468910121415161820212224252627283032333435363839, 14689101214151618202122242526272830323334353638394042444546484950515254555657586062636465666869
Offset: 1
A261191
40-gonal numbers: a(n) = 38*n*(n-1)/2 + n.
Original entry on oeis.org
0, 1, 40, 117, 232, 385, 576, 805, 1072, 1377, 1720, 2101, 2520, 2977, 3472, 4005, 4576, 5185, 5832, 6517, 7240, 8001, 8800, 9637, 10512, 11425, 12376, 13365, 14392, 15457, 16560, 17701, 18880, 20097, 21352, 22645, 23976, 25345, 26752, 28197, 29680, 31201
Offset: 0
-
function a(n){return 38*n*(n-1)/2+n}
-
[n*(19*n-18): n in [0..45]]; // Vincenzo Librandi, Aug 12 2015
-
A261191:=n->38*n*(n-1)/2+n: seq(A261191(n), n=0..50); # Wesley Ivan Hurt, Aug 15 2015
-
Table[n (19 n - 18), {n, 0, 45}] (* Bruno Berselli, Aug 21 2015 *)
-
concat(0, Vec(-x*(37*x+1)/(x-1)^3 + O(x^100))) \\ Colin Barker, Aug 11 2015
-
first(m)=my(v=vector(m,i,i--;38*i*(i-1)/2+i));v; \\ Anders Hellström, Aug 13 2015
A261343
50-gonal numbers: a(n) = 48*n*(n-1)/2 + n.
Original entry on oeis.org
0, 1, 50, 147, 292, 485, 726, 1015, 1352, 1737, 2170, 2651, 3180, 3757, 4382, 5055, 5776, 6545, 7362, 8227, 9140, 10101, 11110, 12167, 13272, 14425, 15626, 16875, 18172, 19517, 20910, 22351, 23840, 25377, 26962, 28595, 30276, 32005, 33782, 35607, 37480
Offset: 0
Comments