cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Tyler Busby

Tyler Busby's wiki page.

Tyler Busby has authored 18 sequences. Here are the ten most recent ones:

A372546 Number of distinct prime factors of n^n+n.

Original entry on oeis.org

1, 2, 3, 3, 3, 5, 5, 4, 3, 7, 4, 4, 4, 8, 6, 5, 5, 6, 10, 6, 6, 10, 6, 5, 6, 8, 8, 11, 6, 7, 11, 7, 7, 13, 7, 9, 8, 7, 5, 10, 7, 7, 12, 7, 9, 18, 6, 7, 10, 10, 11, 11, 10, 9, 14, 12, 12, 11, 7, 9, 13, 6, 7, 16, 5, 14, 10, 7, 7, 15, 11, 7, 13, 7, 8, 16, 9, 13
Offset: 1

Author

Tyler Busby, May 06 2024

Keywords

Programs

  • Mathematica
    a[n_] := PrimeNu[n^n + n]; Array[a, 40] (* Amiram Eldar, Oct 29 2024 *)
  • PARI
    a(n) = omega(n^n+n);
    
  • Python
    from sympy.ntheory.factor_ import primenu
    def A372546(n): return primenu(n*(n**(n-1)+1)) # Chai Wah Wu, May 07 2024

Formula

a(n) = A001221(A066068(n)).

A372599 Number of distinct prime factors of n^n-n.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 4, 6, 5, 6, 5, 9, 5, 6, 12, 8, 4, 10, 5, 11, 7, 6, 7, 12, 8, 13, 8, 10, 6, 14, 8, 12, 9, 10, 18, 18, 6, 11, 11, 19, 8, 16, 5, 12, 13, 7, 7, 20, 5, 18, 12, 14, 7, 21, 12, 19, 10, 10, 7, 24, 7, 10, 20, 15, 13, 19, 6, 19, 11, 19, 9, 25, 6, 13
Offset: 2

Author

Tyler Busby, May 06 2024

Keywords

Programs

  • Mathematica
    a[n_] := a[n] = PrimeNu[n^n - n];
    Table[a[n], {n, 2, 75}] (* Robert P. P. McKone, May 07 2024 *)
  • PARI
    a(n) = omega(n^n-n);
    
  • Python
    from sympy.ntheory.factor_ import primenu
    def A372599(n): return primenu(n*(n**(n-1)-1)) # Chai Wah Wu, May 07 2024

Formula

a(n) = A001221(A061190(n)).

A372228 a(n) is the largest prime factor of n^n + n.

Original entry on oeis.org

2, 3, 5, 13, 313, 101, 181, 5419, 21523361, 52579, 212601841, 57154490053, 815702161, 100621, 4454215139669, 4562284561, 52548582913, 1895634885375961, 211573, 2272727294381, 415710882920521, 9299179, 1853387306082786629, 22496867303759173834520497
Offset: 1

Author

Tyler Busby, Apr 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[f = FactorInteger[n^n + n]; f[[Length[f]]][[1]], {n, 1, 25}] (* Vaclav Kotesovec, Apr 26 2024 *)
  • Python
    from sympy import primefactors
    def A372228(n): return max(max(primefactors(n),default=1),max(primefactors(n**(n-1)+1))) # Chai Wah Wu, Apr 27 2024

Formula

a(n) = A006530(A066068(n)).

A372229 a(n) is the largest prime factor of n^n - n.

Original entry on oeis.org

2, 3, 7, 13, 311, 43, 337, 193, 333667, 13421, 266981089, 28393, 29914249171, 10678711, 1321, 184417, 7563707819165039903, 236377, 192696104561, 920421641, 12271836836138419, 39700406579747, 58769065453824529, 152587500001, 4315817869647001, 797161
Offset: 2

Author

Tyler Busby, Apr 23 2024

Keywords

Crossrefs

Programs

  • Maple
    pf := n -> NumberTheory:-PrimeFactors(n): a := n -> max(pf(n^n - n));
    seq(a(n), n = 2..27);  # Peter Luschny, Apr 27 2024
  • Mathematica
    Table[f = FactorInteger[n^n-n]; f[[Length[f]]][[1]], {n,2,25}] (* Vaclav Kotesovec, Apr 26 2024 *)
  • Python
    from sympy import primefactors
    def A372229(n): return max(max(primefactors(n),default=1),max(primefactors(n**(n-1)-1),default=1)) # Chai Wah Wu, Apr 27 2024

Formula

a(n) = A006530(A061190(n)).

A366899 Number of prime factors of n*2^n - 1, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 3, 2, 1, 2, 2, 2, 2, 3, 2, 4, 5, 4, 6, 3, 2, 3, 2, 4, 5, 3, 3, 2, 3, 3, 4, 5, 1, 3, 2, 3, 5, 3, 5, 2, 3, 2, 5, 4, 3, 5, 3, 4, 5, 7, 4, 4, 3, 3, 4, 5, 3, 4, 3, 4, 3, 5, 3, 3, 4, 3, 9, 6, 4, 4, 6, 4, 3, 3, 2, 5, 4, 1, 9, 3, 4, 5, 2, 1, 4, 5, 6, 2, 3, 4
Offset: 1

Author

Tyler Busby, Oct 26 2023

Keywords

Comments

The numbers n*2^n-1 are called Woodall (or Riesel) numbers.

Crossrefs

Cf. A001222, A003261, A085723, A366898 (divisors), A367006 (without multiplicity).

Programs

  • Mathematica
    Table[PrimeOmega[n*2^n - 1], {n, 1, 100}] (* Amiram Eldar, Dec 09 2023 *)
  • PARI
    a(n) = bigomega(n*2^n - 1); \\ Michel Marcus, Dec 09 2023

Formula

a(n) = bigomega(n*2^n - 1) = A001222(A003261(n)).

A366898 Number of divisors of n*2^n - 1, the Woodall (or Riesel) numbers.

Original entry on oeis.org

1, 2, 2, 6, 4, 2, 4, 4, 4, 4, 6, 4, 12, 10, 8, 48, 8, 4, 8, 4, 16, 16, 8, 8, 4, 8, 8, 16, 24, 2, 8, 4, 8, 32, 8, 32, 4, 8, 4, 24, 16, 8, 32, 8, 16, 24, 40, 16, 16, 8, 8, 16, 24, 8, 16, 8, 16, 6, 32, 8, 8, 16, 8, 512, 48, 16, 12, 48, 16, 8, 8, 4, 24, 16, 2, 256
Offset: 1

Author

Tyler Busby, Oct 26 2023

Keywords

Programs

  • Mathematica
    Table[DivisorSigma[0, n*2^n - 1], {n, 1, 100}] (* Amiram Eldar, Dec 11 2023 *)
  • PARI
    a(n) = numdiv(n*2^n - 1); \\ Amiram Eldar, Dec 11 2023

Formula

a(n) = sigma0(n*2^n - 1) = A000005(A003261(n)).

A364818 Number of distinct prime divisors of A000129(n) (Pell numbers).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 2, 5, 2, 6, 3, 4, 2, 7, 3, 4, 4, 6, 1, 7, 3, 5, 3, 5, 3, 9, 3, 4, 4, 9, 1, 7, 2, 8, 6, 5, 2, 10, 3, 6, 5, 7, 1, 8, 5, 8, 5, 3, 1, 13, 3, 6, 6, 8, 6, 8, 2, 9, 4, 8, 3, 13, 2, 7, 8, 9, 5, 10, 4, 12, 7, 5, 2, 14, 7
Offset: 1

Author

Tyler Busby, Oct 21 2023

Keywords

Examples

			a(8)=3 because Pell(8)=408 has prime factors {2, 2, 2, 3, 17}.
		

Programs

  • Mathematica
    PrimeNu[LinearRecurrence[{2, 1}, {1, 2}, 85]] (* Amiram Eldar, Oct 21 2023 *)

Formula

a(n) = omega(Pell(n)) = A001221(A000129(n)).

A363829 Sum of the divisors of A000129(n) (Pell numbers).

Original entry on oeis.org

1, 3, 6, 28, 30, 144, 183, 1080, 1188, 3780, 5742, 52416, 33462, 131760, 251100, 1290096, 1145124, 5702400, 6804204, 42336000, 50176404, 146352096, 226041700, 2333111040, 1357893000, 4818528000, 9395060400, 47385112320, 44560482150, 251337038400, 264178169640
Offset: 1

Author

Tyler Busby, Oct 19 2023

Keywords

Examples

			a(9)=1188 because Pell(9)=985 has divisors {1, 5, 197, 985}.
		

Programs

  • Mathematica
    DivisorSigma[1, LinearRecurrence[{2, 1}, {1, 2}, 32]] (* Amiram Eldar, Oct 19 2023 *)

Formula

a(n) = sigma(Pell(n)) = A000203(A000129(n)).

A363831 Number of divisors of A000129(n) (Pell numbers).

Original entry on oeis.org

1, 2, 2, 6, 2, 8, 3, 16, 4, 8, 2, 72, 2, 12, 12, 40, 4, 32, 4, 96, 12, 16, 4, 384, 8, 16, 16, 144, 2, 288, 8, 96, 8, 32, 12, 1536, 8, 16, 16, 1024, 2, 288, 4, 384, 96, 32, 4, 3840, 12, 64, 32, 192, 2, 256, 32, 768, 32, 8, 2, 41472, 8, 64, 96, 896, 64, 256, 4
Offset: 1

Author

Tyler Busby, Oct 19 2023

Keywords

Examples

			a(9)=4 because Pell(9)=985 has divisors {1, 5, 197, 985}.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0,LinearRecurrence[{2,1},{1,2},67]] (* Stefano Spezia, Oct 19 2023 *)

Formula

a(n) = sigma0(Pell(n)) = A000005(A000129(n)).

A363833 Number of prime factors of A000129(n) (Pell numbers) (counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 2, 5, 2, 3, 1, 7, 1, 4, 4, 7, 2, 5, 2, 7, 4, 4, 2, 10, 3, 4, 4, 8, 1, 9, 3, 9, 3, 5, 4, 12, 3, 4, 4, 11, 1, 9, 2, 9, 7, 5, 2, 14, 4, 6, 5, 8, 1, 8, 5, 11, 5, 3, 1, 17, 3, 6, 7, 13, 6, 8, 2, 10, 4, 9, 3, 17, 2, 7, 10, 10, 6, 10, 4, 15, 7, 5, 2
Offset: 1

Author

Tyler Busby, Oct 19 2023

Keywords

Examples

			a(8)=5 because Pell(8)=408 has prime factors {2, 2, 2, 3, 17}.
		

Programs

  • Mathematica
    PrimeOmega[LinearRecurrence[{2,1},{1,2},83]] (* Stefano Spezia, Oct 19 2023 *)

Formula

a(n) = bigomega(Pell(n)) = A001222(A000129(n)).