cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A366898 Number of divisors of n*2^n - 1, the Woodall (or Riesel) numbers.

Original entry on oeis.org

1, 2, 2, 6, 4, 2, 4, 4, 4, 4, 6, 4, 12, 10, 8, 48, 8, 4, 8, 4, 16, 16, 8, 8, 4, 8, 8, 16, 24, 2, 8, 4, 8, 32, 8, 32, 4, 8, 4, 24, 16, 8, 32, 8, 16, 24, 40, 16, 16, 8, 8, 16, 24, 8, 16, 8, 16, 6, 32, 8, 8, 16, 8, 512, 48, 16, 12, 48, 16, 8, 8, 4, 24, 16, 2, 256
Offset: 1

Views

Author

Tyler Busby, Oct 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, n*2^n - 1], {n, 1, 100}] (* Amiram Eldar, Dec 11 2023 *)
  • PARI
    a(n) = numdiv(n*2^n - 1); \\ Amiram Eldar, Dec 11 2023

Formula

a(n) = sigma0(n*2^n - 1) = A000005(A003261(n)).

A367003 a(n) is the largest prime factor of n*2^n-1.

Original entry on oeis.org

1, 7, 23, 7, 53, 383, 179, 89, 271, 3413, 2503, 2137, 59, 367, 1433, 41, 15803, 59729, 26423, 11161, 1559, 12611, 9187523, 127867, 119837257, 11527, 2360833, 43969, 2339, 32212254719, 257503, 616318177, 260587, 127873, 682902239, 44939, 69660839431, 1185617
Offset: 1

Views

Author

Sean A. Irvine, Oct 31 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := FactorInteger[n*2^n - 1][[-1, 1]]; Array[a, 40] (* Amiram Eldar, Oct 29 2024 *)

Formula

a(n) = A006530(A003261(n)).

A367006 Number of distinct prime factors of n*2^n - 1.

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 5, 3, 2, 3, 2, 4, 3, 3, 3, 2, 3, 3, 4, 4, 1, 3, 2, 3, 5, 3, 5, 2, 3, 2, 4, 4, 3, 5, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 3, 4, 3, 4, 2, 5, 3, 3, 4, 3, 9, 5, 4, 3, 5, 4, 3, 3, 2, 4, 4, 1, 7, 3, 4, 5, 2, 1, 4, 4, 6, 2, 2, 4
Offset: 1

Views

Author

Sean A. Irvine, Oct 31 2023

Keywords

Comments

The numbers n*2^n-1 are called Woodall (or Riesel) numbers.

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[n*2^n - 1], {n, 1, 100}] (* Amiram Eldar, Dec 11 2023 *)
  • PARI
    a(n) = omega(n*2^n - 1); \\ Amiram Eldar, Dec 11 2023

Formula

a(n) = omega(n*2^n - 1) = A001221(A003261(n)).

A367002 a(n) is the smallest prime factor of n*2^n-1.

Original entry on oeis.org

7, 23, 3, 3, 383, 5, 23, 17, 3, 3, 23, 5, 5, 7, 3, 3, 79, 13, 1879, 13, 3, 3, 47, 7, 229, 5, 3, 3, 32212254719, 263, 223, 5, 3, 3, 5, 73, 17, 1217, 3, 3, 6709, 29, 7, 71, 3, 3, 11, 97, 47, 228713, 3, 3, 5, 37, 5, 7, 3, 3, 9377, 11, 13, 479, 3, 3, 41, 5, 13, 137
Offset: 2

Views

Author

Sean A. Irvine, Oct 31 2023

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> min(numtheory:-factorset(n*2^n-1)):
    map(f, [$2..100]); # Robert Israel, Nov 08 2023
  • Mathematica
    Table[FactorInteger[n*2^n-1][[1,1]], {n,2,69}] (* Paul F. Marrero Romero, Dec 17 2023 *)

Formula

a(n) = A020639(A003261(n)).
a(n) = 3 iff n == 4 or 5 (mod 6). - Robert Israel, Nov 08 2023

A367008 Number of prime factors of n*2^n + 1, counted with multiplicity.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 3, 2, 2, 4, 2, 3, 3, 3, 3, 2, 4, 4, 4, 5, 2, 4, 4, 4, 4, 5, 4, 3, 3, 6, 6, 3, 2, 5, 2, 4, 3, 4, 3, 3, 4, 4, 5, 4, 4, 5, 5, 4, 5, 6, 3, 6, 3, 5, 4, 4, 5, 5, 4, 4, 7, 3, 3, 7, 5, 9, 5, 4, 5, 5, 6, 5, 5, 5, 5, 5, 4, 4, 6, 4, 4, 4, 5, 4, 7, 6
Offset: 0

Views

Author

Sean A. Irvine, Oct 31 2023

Keywords

Comments

The numbers n*2^n+1 are called Cullen numbers.

Crossrefs

Programs

  • Mathematica
    Table[PrimeOmega[n*2^n + 1], {n, 0, 100}] (* Amiram Eldar, Jan 06 2024 *)
  • PARI
    a(n) = bigomega(n*2^n + 1); \\ Amiram Eldar, Jan 06 2024

Formula

a(n) = bigomega(n*2^n + 1) = A001222(A002064(n)).
Showing 1-5 of 5 results.