cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A372546 Number of distinct prime factors of n^n+n.

Original entry on oeis.org

1, 2, 3, 3, 3, 5, 5, 4, 3, 7, 4, 4, 4, 8, 6, 5, 5, 6, 10, 6, 6, 10, 6, 5, 6, 8, 8, 11, 6, 7, 11, 7, 7, 13, 7, 9, 8, 7, 5, 10, 7, 7, 12, 7, 9, 18, 6, 7, 10, 10, 11, 11, 10, 9, 14, 12, 12, 11, 7, 9, 13, 6, 7, 16, 5, 14, 10, 7, 7, 15, 11, 7, 13, 7, 8, 16, 9, 13
Offset: 1

Views

Author

Tyler Busby, May 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeNu[n^n + n]; Array[a, 40] (* Amiram Eldar, Oct 29 2024 *)
  • PARI
    a(n) = omega(n^n+n);
    
  • Python
    from sympy.ntheory.factor_ import primenu
    def A372546(n): return primenu(n*(n**(n-1)+1)) # Chai Wah Wu, May 07 2024

Formula

a(n) = A001221(A066068(n)).

A377675 Number of prime factors of n^n-n (counted with multiplicity).

Original entry on oeis.org

1, 4, 5, 7, 5, 9, 7, 12, 8, 9, 7, 13, 6, 11, 17, 16, 6, 17, 7, 15, 10, 10, 10, 19, 11, 18, 15, 14, 7, 22, 13, 21, 11, 14, 22, 24, 7, 15, 15, 26, 9, 20, 7, 17, 17, 12, 11, 30, 9, 24, 15, 20, 10, 29, 16, 27, 12, 13, 9, 29, 8, 18, 29, 27, 15, 24, 8, 23, 13, 25
Offset: 2

Views

Author

Sean A. Irvine, Nov 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeOmega[n^n - n]; Array[a, 45, 2] (* Amiram Eldar, Nov 04 2024 *)
  • PARI
    a(n) = bigomega(n^n-n);

Formula

a(n) = A001222(A061190(n)).

A377676 a(n) is the number of divisors of n^n - n.

Original entry on oeis.org

2, 8, 18, 40, 24, 120, 48, 336, 80, 192, 72, 1920, 48, 288, 23040, 1728, 36, 10240, 72, 7680, 432, 240, 384, 32256, 640, 49152, 2016, 3840, 96, 193536, 1152, 22528, 1152, 4608, 1327104, 1638400, 96, 7680, 9216, 4128768, 384, 294912, 72, 23040, 30720, 576
Offset: 2

Views

Author

Sean A. Irvine, Nov 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, n^n - n]; Array[a, 45, 2] (* Amiram Eldar, Nov 04 2024 *)
  • PARI
    a(n) = numdiv(n^n-n);

Formula

a(n) = A000005(A061190(n)).

A377678 a(n) = phi(n^n - n) where phi is the Euler totient function.

Original entry on oeis.org

1, 8, 72, 768, 12400, 217728, 7112448, 94371840, 2594586816, 69139840000, 2584376931840, 58779453358080, 4367959006806720, 100089965305451520, 3251736576000000000, 200445251536048619520, 12343971160877345120064, 422076038504126628593664
Offset: 2

Views

Author

Sean A. Irvine, Nov 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := EulerPhi[n^n - n]; Array[a, 20, 2] (* Amiram Eldar, Nov 04 2024 *)
  • PARI
    a(n) = eulerphi(n^n-n);

Formula

a(n) = A000010(A061190(n)).
Showing 1-4 of 4 results.