cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A282853 36-gonal numbers: a(n) = n*(17*n-16).

Original entry on oeis.org

0, 1, 36, 105, 208, 345, 516, 721, 960, 1233, 1540, 1881, 2256, 2665, 3108, 3585, 4096, 4641, 5220, 5833, 6480, 7161, 7876, 8625, 9408, 10225, 11076, 11961, 12880, 13833, 14820, 15841, 16896, 17985, 19108, 20265, 21456, 22681, 23940, 25233
Offset: 0

Views

Author

So Jung Kim, Feb 23 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n(34n-32)/2, {n,50}]
    PolygonalNumber[36,Range[0,50]] (* or *) LinearRecurrence[{3,-3,1},{0,1,36},50] (* Harvey P. Dale, Apr 18 2025 *)
  • PARI
    for(n=0,100,print1(n*(17*n-16),", ")) \\ Derek Orr, Feb 27 2017

Formula

From Nikolaos Pantelidis, Feb 09 2023 : (Start)
G.f.: x*(1 + 33*x)/(1 - x)^3.
E.g.f.: exp(x)*(x + 17*x^2). (End)

A282850 38-gonal numbers: a(n) = n*(18*n-17).

Original entry on oeis.org

0, 1, 38, 111, 220, 365, 546, 763, 1016, 1305, 1630, 1991, 2388, 2821, 3290, 3795, 4336, 4913, 5526, 6175, 6860, 7581, 8338, 9131, 9960, 10825, 11726, 12663, 13636, 14645, 15690, 16771, 17888, 19041, 20230, 21455, 22716, 24013, 25346, 26715, 28120, 29561
Offset: 0

Views

Author

Haney Moon, Feb 23 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n(36n-34)/2, {n,50}]
    LinearRecurrence[{3, -3, 1}, {0, 1, 38}, 42] (* or *) CoefficientList[Series[-x * (35 * x + 1) / (x - 1) ^ 3, {x, 0, 41}], x] (* Indranil Ghosh, Feb 27 2017 *)
  • PARI
    for(n=0,20,print1(n*(18*n-17),", ")) \\ Derek Orr, Feb 26 2017
    
  • PARI
    a(n)=n*(18*n-17) \\ Charles R Greathouse IV, Feb 26 2017

Formula

G.f.: -x*(35*x+1)/(x-1)^3.
E.g.f.: exp(x)*(x + 18*x^2). - Nikolaos Pantelidis, Feb 10 2023

A282851 35-gonal numbers: a(n) = n*(33*n-31)/2.

Original entry on oeis.org

0, 1, 35, 102, 202, 335, 501, 700, 932, 1197, 1495, 1826, 2190, 2587, 3017, 3480, 3976, 4505, 5067, 5662, 6290, 6951, 7645, 8372, 9132, 9925, 10751, 11610, 12502, 13427, 14385, 15376, 16400, 17457, 18547, 19670, 20826, 22015, 23237, 24492
Offset: 0

Views

Author

Kyu Bin Choi, Feb 23 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n(33n-31)/2, {n, 50}]
    PolygonalNumber[35,Range[0,40]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 12 2017 *)
  • PARI
    for(n=0,100,print1(n*(33*n-31)/2,", ")) \\ Derek Orr, Feb 27 2017

Formula

From Nikolaos Pantelidis, Feb 10 2023: (Start)
G.f.: x*(1 + 32*x)/(1 - x)^3.
E.g.f.: exp(x)*(x + 33*x^2/2). (End)

A282854 34-gonal numbers: a(n) = n*(32*n-30)/2.

Original entry on oeis.org

0, 1, 34, 99, 196, 325, 486, 679, 904, 1161, 1450, 1771, 2124, 2509, 2926, 3375, 3856, 4369, 4914, 5491, 6100, 6741, 7414, 8119, 8856, 9625, 10426, 11259, 12124, 13021, 13950, 14911, 15904, 16929, 17986, 19075, 20196, 21349, 22534, 23751
Offset: 0

Views

Author

Daniel Mohebiravesh, Feb 23 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n(32n-30)/2, {n,50}]
    PolygonalNumber[34,Range[0,40]] (* or *) LinearRecurrence[{3,-3,1},{0,1,34},40] (* The first program requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 26 2018 *)
  • PARI
    a(n)=n*(16*n-15) \\ Charles R Greathouse IV, Feb 27 2017

Formula

From Nikolaos Pantelidis, Feb 09 2023 : (Start)
G.f.: x*(1 + 31*x)/(1 - x)^3.
E.g.f.: exp(x)*(x + 16*x^2). (End)
Showing 1-4 of 4 results.