cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 58 results. Next

A250120 Coordination sequence for planar net 3.3.3.3.6 (also called the fsz net).

Original entry on oeis.org

1, 5, 9, 15, 19, 24, 29, 33, 39, 43, 48, 53, 57, 63, 67, 72, 77, 81, 87, 91, 96, 101, 105, 111, 115, 120, 125, 129, 135, 139, 144, 149, 153, 159, 163, 168, 173, 177, 183, 187, 192, 197, 201, 207, 211, 216, 221, 225, 231, 235
Offset: 0

Views

Author

N. J. A. Sloane, Nov 23 2014

Keywords

Comments

There are eleven uniform (or Archimedean) tilings (or planar nets), with vertex symbols 3^6, 3^4.6, 3^3.4^2, 3^2.4.3.4, 4^4, 3.4.6.4, 3.6.3.6, 6^3, 3.12^2, 4.6.12, and 4.8^2. Grünbaum and Shephard (1987) is the best reference.
a(n) is the number of vertices at graph distance n from any fixed vertex.
The Mathematica notebook can compute 30 or 40 iterations, and colors them with period 5. You could also change out images if you want to. These graphs are better for analyzing 5-iteration chunks of the pattern. You can see that under iteration all fragments of the circumferences are preserved in shape and translated outwards a distance approximately sqrt(21) (relative to small triangle edge), the length of a long diagonal of larger rhombus unit cell. The conjectured recurrence should follow from an analysis of how new pieces occur in between the translated pieces. - Bradley Klee, Nov 26 2014

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Fig. 2.1.5, p. 63.
  • Marjorie Senechal, Quasicrystals and geometry, Cambridge University Press, Cambridge, 1995, Fig. 1.10, Section 1.3, pp. 13-16.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
For partial sums of the present sequence, see A250121.

Programs

  • C
    /* Comments on the C program (see link) from Maurizio Paolini, Nov 23 2014: Basically what I do is deform the net onto the integral lattice, connect nodes aligned either horizontally, vertically or diagonally from northeast to southwest, marking as UNREACHABLE the nodes with coordinates (i, j) satisfying i + 2*j = 0 mod 7. Then the code computes the distance from each node to the central node of the grid. */
  • Mathematica
    CoefficientList[Series[(x^2+x+1)(x^4+3x^3+3x+1)/((x^4+x^3+x^2+x+1)(x-1)^2), {x, 0, 80}], x] (* or *) LinearRecurrence[{1, 0, 0, 0, 1, -1}, {1, 5, 9, 15, 19, 24, 29}, 60] (* Harvey P. Dale, May 05 2018 *)

Formula

Based on the computations of Darrah Chavey, Bradley Klee, and Maurizio Paolini, there is a strong conjecture that the first differences of this sequence are 4, 4, 6, 4, 5, 5, 4, 6, 4, 5, 5, 4, 6, 4, 5, 5, ..., that is, 4 followed by (4,6,4,5,5) repeated.
This would imply that the sequence satisfies the recurrence:
for n > 2, a(n) = a(n-1) + { n == 0,3 (mod 5), 4; n == 4 (mod 5), 6; n == 1,2 (mod 5), 5 }
(from Darrah Chavey)
and has generating function
(x^2+x+1)*(x^4+3*x^3+3*x+1)/((x^4+x^3+x^2+x+1)*(x-1)^2)
All the above conjectures are true - for proof see link to my article with Chaim Goodman-Strauss. - N. J. A. Sloane, Jan 14 2018; link added Mar 26 2018
a(n) ~ 24*n/5. - Stefano Spezia, May 08 2022
For n>0, a(n) = 2*(12*n + sqrt(1+2/sqrt(5))*sin(4*Pi*n/5) - sqrt(1-2/sqrt(5))*sin(2*Pi*n/5))/5. - Natalia L. Skirrow, Apr 13 2025

Extensions

a(6)-a(10) from Bradley Klee, Nov 23 2014
a(11)-a(49) from Maurizio Paolini, Nov 23 2014

A004016 Theta series of planar hexagonal lattice A_2.

Original entry on oeis.org

1, 6, 0, 6, 6, 0, 0, 12, 0, 6, 0, 0, 6, 12, 0, 0, 6, 0, 0, 12, 0, 12, 0, 0, 0, 6, 0, 6, 12, 0, 0, 12, 0, 0, 0, 0, 6, 12, 0, 12, 0, 0, 0, 12, 0, 0, 0, 0, 6, 18, 0, 0, 12, 0, 0, 0, 0, 12, 0, 0, 0, 12, 0, 12, 6, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 6, 12, 0, 0, 12, 0
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
a(n) is the number of integer solutions to x^2 + x*y + y^2 = n (or equivalently x^2 - x*y + y^2 = n). - Michael Somos, Sep 20 2004
a(n) is the number of integer solutions to x^2 + y^2 + z^2 = 2*n where x + y + z = 0. - Michael Somos, Mar 12 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (the present sequence), b(q) (A005928), c(q) (A005882).
a(n) = 6*A002324(n) if n>0, and A002324 is multiplicative, thus a(1)*a(m*n) = a(n)*a(m) if n>0, m>0 are relatively prime. - Michael Somos, Mar 17 2019
The first occurrence of a(n)= 6, 12, 18, 24, ... (multiples of 6) is at n= 1, 7, 49, 91, 2401, 637, 117649, ... (see A002324). - R. J. Mathar, Sep 21 2024

Examples

			G.f. = 1 + 6*x + 6*x^3 + 6*x^4 + 12*x^7 + 6*x^9 + 6*x^12 + 12*x^13 + 6*x^16 + ...
Theta series of A_2 on the standard scale in which the minimal norm is 2:
1 + 6*q^2 + 6*q^6 + 6*q^8 + 12*q^14 + 6*q^18 + 6*q^24 + 12*q^26 + 6*q^32 + 12*q^38 + 12*q^42 + 6*q^50 + 6*q^54 + 12*q^56 + 12*q^62 + 6*q^72 + 12*q^74 + 12*q^78 + 12*q^86 + 6*q^96 + 18*q^98 + 12*q^104 + 12*q^114 + 12*q^122 + 12*q^126 + 6*q^128 + 12*q^134 + 12*q^146 + 6*q^150 + 12*q^152 + 12*q^158 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 171, Entry 28.
  • Harvey Cohn, Advanced Number Theory, Dover Publications, Inc., 1980, p. 89. Ex. 18.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.
  • M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996; p. 236.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See also A035019.
Cf. A000007, A000122, A004015, A008444, A008445, A008446, A008447, A008448, A008449 (Theta series of lattices A_0, A_1, A_3, A_4, ...), A186706.

Programs

  • Magma
    Basis( ModularForms( Gamma1(3), 1), 81) [1]; /* Michael Somos, May 27 2014 */
    
  • Magma
    L := Lattice("A",2); A := ThetaSeries(L, 161); A; /* Michael Somos, Nov 13 2014 */
    
  • Maple
    A004016 := proc(n)
        local a,j ;
        a := A033716(n) ;
        for j from 0 to n/3 do
            a := a+A089800(n-1-3*j)*A089800(j) ;
        end do:
        a;
    end proc:
    seq(A004016(n),n=0..49) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0 ], 6 DivisorSum[ n, KroneckerSymbol[ #, 3] &]]; (* Michael Somos, Nov 08 2011 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^3 + 9 q QPochhammer[ q^9]^3) / QPochhammer[ q^3], {q, 0, n}]; (* Michael Somos, Nov 13 2014 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^3] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^3], {q, 0, n}]; (* Michael Somos, Nov 13 2014 *)
    a[ n_] := Length @ FindInstance[ x^2 + x y + y^2 == n, {x, y}, Integers, 10^9]; (* Michael Somos, Sep 14 2015 *)
    terms = 81; f[q_] = LatticeData["A2", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q], {q, 0, 2 terms}]; CoefficientList[s, q^2][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 6 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, p%3==1, e+1, 1-e%2)))}; /* Michael Somos, May 20 2005 */ /* Editor's note: this is the most efficient program */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 6 * sum( k=1,n, x^k / (1 + x^k + x^(2*k)), x * O(x^n)), n))}; /* Michael Somos, Oct 06 2003 */
    
  • PARI
    {a(n) = if( n<1, n==0, 6 * sumdiv( n,d, kronecker( d, 3)))}; /* Michael Somos, Mar 16 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 6 * sumdiv( n,d, (d%3==1) - (d%3==2)))}; /* Michael Somos, May 20 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, n*=3; A = x * O(x^n); polcoeff( (eta(x + A)^3  + 3 * x * eta(x^9 + A)^3) / eta(x^3 + A), n))}; /* Michael Somos, May 20 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, qfrep([ 2, 1; 1, 2], n, 1)[n] * 2)}; /* Michael Somos, Jul 16 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 6 * sum( k=1, n, x^(3*k - 2) / (1 - x^(3*k - 2)) - x^(3*k - 1) / (1 - x^(3*k - 1)), x * O(x^n)), n))} /* Paul D. Hanna, Jul 03 2011 */
    
  • Python
    from math import prod
    from sympy import factorint
    def A004016(n): return 6*prod(e+1 if p%3==1 else int(not e&1) for p, e in factorint(n).items() if p != 3) if n else 1 # Chai Wah Wu, Nov 17 2022
  • Sage
    ModularForms( Gamma1(3), 1, prec=81).0 ; # Michael Somos, Jun 04 2013
    

Formula

Expansion of a(q) in powers of q where a(q) is the first cubic AGM theta function.
Expansion of theta_3(q) * theta_3(q^3) + theta_2(q) * theta_2(q^3) in powers of q.
Expansion of phi(x) * phi(x^3) + 4 * x * psi(x^2) * psi(x^6) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of (1 / Pi) integral_{0 .. Pi/2} theta_3(z, q)^3 + theta_4(z, q)^3 dz in powers of q^2. - Michael Somos, Jan 01 2012
Expansion of coefficient of x^0 in f(x * q, q / x)^3 in powers of q^2 where f(,) is Ramanujan's general theta function. - Michael Somos, Jan 01 2012
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - 3*v^2 - 2*u*w + 4*w^2. - Michael Somos, Jun 11 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1-u3) * (u3-u6) - (u2-u6)^2. - Michael Somos, May 20 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 11 2007
G.f. A(x) satisfies A(x) + A(-x) = 2 * A(x^4), from Ramanujan.
G.f.: 1 + 6 * Sum_{k>0} x^k / (1 + x^k + x^(2*k)). - Michael Somos, Oct 06 2003
G.f.: Sum_( q^(n^2+n*m+m^2) ) where the sum (for n and m) extends over the integers. - Joerg Arndt, Jul 20 2011
G.f.: theta_3(q) * theta_3(q^3) + theta_2(q) * theta_2(q^3) = (eta(q^(1/3))^3 + 3 * eta(q^3)^3) / eta(q).
G.f.: 1 + 6*Sum_{n>=1} x^(3*n-2)/(1-x^(3*n-2)) - x^(3*n-1)/(1-x^(3*n-1)). - Paul D. Hanna, Jul 03 2011
a(3*n + 2) = 0, a(3*n) = a(n), a(3*n + 1) = 6 * A033687(n). - Michael Somos, Jul 16 2005
a(2*n + 1) = 6 * A033762(n), a(4*n + 2) = 0, a(4*n) = a(n), a(4*n + 1) = 6 * A112604(n), a(4*n + 3) = 6 * A112595(n). - Michael Somos, May 17 2013
a(n) = 6 * A002324(n) if n>0. a(n) = A005928(3*n).
Euler transform of A192733. - Michael Somos, Mar 12 2012
a(n) = (-1)^n * A180318(n). - Michael Somos, Sep 14 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(3) = 3.627598... (A186706). - Amiram Eldar, Oct 15 2022

A000537 Sum of first n cubes; or n-th triangular number squared.

Original entry on oeis.org

0, 1, 9, 36, 100, 225, 441, 784, 1296, 2025, 3025, 4356, 6084, 8281, 11025, 14400, 18496, 23409, 29241, 36100, 44100, 53361, 64009, 76176, 90000, 105625, 123201, 142884, 164836, 189225, 216225, 246016, 278784, 314721, 354025, 396900, 443556, 494209, 549081
Offset: 0

Views

Author

Keywords

Comments

Number of parallelograms in an n X n rhombus. - Matti De Craene (Matti.DeCraene(AT)rug.ac.be), May 14 2000
Or, number of orthogonal rectangles in an n X n checkerboard, or rectangles in an n X n array of squares. - Jud McCranie, Feb 28 2003. Compare A085582.
Also number of 2-dimensional cage assemblies (cf. A059827, A059860).
The n-th triangular number T(n) = Sum_{r=1..n} r = n(n+1)/2 satisfies the relations: (i) T(n) + T(n-1) = n^2 and (ii) T(n) - T(n-1) = n by definition, so that n^2*n = n^3 = {T(n)}^2 - {T(n-1)}^2 and by summing on n we have Sum_{ r = 1..n } r^3 = {T(n)}^2 = (1+2+3+...+n)^2 = (n*(n+1)/2)^2. - Lekraj Beedassy, May 14 2004
Number of 4-tuples of integers from {0,1,...,n}, without repetition, whose last component is strictly bigger than the others. Number of 4-tuples of integers from {1,...,n}, with repetition, whose last component is greater than or equal to the others.
Number of ordered pairs of two-element subsets of {0,1,...,n} without repetition.
Number of ordered pairs of 2-element multisubsets of {1,...,n} with repetition.
1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... + n)^2.
a(n) is the number of parameters needed in general to know the Riemannian metric g of an n-dimensional Riemannian manifold (M,g), by knowing all its second derivatives; even though to know the curvature tensor R requires (due to symmetries) (n^2)*(n^2-1)/12 parameters, a smaller number (and a 4-dimensional pyramidal number). - Jonathan Vos Post, May 05 2006
Also number of hexagons with vertices in an hexagonal grid with n points in each side. - Ignacio Larrosa Cañestro, Oct 15 2006
Number of permutations of n distinct letters (ABCD...) each of which appears twice with 4 and n-4 fixed points. - Zerinvary Lajos, Nov 09 2006
With offset 1 = binomial transform of [1, 8, 19, 18, 6, ...]. - Gary W. Adamson, Dec 03 2008
The sequence is related to A000330 by a(n) = n*A000330(n) - Sum_{i=0..n-1} A000330(i): this is the case d=1 in the identity n*(n*(d*n-d+2)/2) - Sum_{i=0..n-1} i*(d*i-d+2)/2 = n*(n+1)*(2*d*n-2*d+3)/6. - Bruno Berselli, Apr 26 2010, Mar 01 2012
From Wolfdieter Lang, Jan 11 2013: (Start)
For sums of powers of positive integers S(k,n) := Sum_{j=1..n}j^k one has the recurrence S(k,n) = (n+1)*S(k-1,n) - Sum_{l=1..n} S(k-1,l), n >= 1, k >= 1.
This was used for k=4 by Ibn al-Haytham in an attempt to compute the volume of the interior of a paraboloid. See the Strick reference where the trick he used is shown, and the W. Lang link.
This trick generalizes immediately to arbitrary powers k. For k=3: a(n) = (n+1)*A000330(n) - Sum_{l=1..n} A000330(l), which coincides with the formula given in the previous comment by Berselli. (End)
Regarding to the previous contribution, see also Matem@ticamente in Links field and comments on this recurrences in similar sequences (partial sums of n-th powers). - Bruno Berselli, Jun 24 2013
A rectangular prism with sides A000217(n), A000217(n+1), and A000217(n+2) has surface area 6*a(n+1). - J. M. Bergot, Aug 07 2013, edited with corrected indices by Antti Karttunen, Aug 09 2013
A formula for the r-th successive summation of k^3, for k = 1 to n, is (6*n^2+r*(6*n+r-1)*(n+r)!)/((r+3)!*(n-1)!), (H. W. Gould). - Gary Detlefs, Jan 02 2014
Note that this sequence and its formula were known to (and possibly discovered by) Nicomachus, predating Ibn al-Haytham by 800 years. - Charles R Greathouse IV, Apr 23 2014
a(n) is the number of ways to paint the sides of a nonsquare rectangle using at most n colors. Cf. A039623. - Geoffrey Critzer, Jun 18 2014
For n > 0: A256188(a(n)) = A000217(n) and A256188(m) != A000217(n) for m < a(n), i.e., positions of first occurrences of triangular numbers in A256188. - Reinhard Zumkeller, Mar 26 2015
There is no cube in this sequence except 0 and 1. - Altug Alkan, Jul 02 2016
Also the number of chordless cycles in the complete bipartite graph K_{n+1,n+1}. - Eric W. Weisstein, Jan 02 2018
a(n) is the sum of the elements in the multiplication table [0..n] X [0..n]. - Michel Marcus, May 06 2021

Examples

			G.f. = x + 9*x^2 + 36*x^3 + 100*x^4 + 225*x^5 + 441*x^6 + ... - _Michael Somos_, Aug 29 2022
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 62, eq. (6.3) for k=3.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 110ff.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, pp. 36, 58.
  • Clifford Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Oxford University Press, 2001, p. 325.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. K. Strick, Geschichten aus der Mathematik II, Spektrum Spezial 3/11, p. 13.
  • D. Wells, You Are A Mathematician, "Counting rectangles in a rectangle", Problem 8H, pp. 240; 254, Penguin Books 1995.

Crossrefs

Convolution of A000217 and A008458.
Row sums of triangles A094414 and A094415.
Second column of triangle A008459.
Row 3 of array A103438.
Cf. A236770 (see crossrefs).

Programs

  • GAP
    List([0..40],n->(n*(n+1)/2)^2); # Muniru A Asiru, Dec 05 2018
    
  • Haskell
    a000537 = a000290 . a000217  -- Reinhard Zumkeller, Mar 26 2015
    
  • Magma
    [(n*(n+1)/2)^2: n in [0..50]]; // Wesley Ivan Hurt, Jun 06 2014
    
  • Maple
    a:= n-> (n*(n+1)/2)^2:
    seq(a(n), n=0..40);
  • Mathematica
    Accumulate[Range[0, 50]^3] (* Harvey P. Dale, Mar 01 2011 *)
    f[n_] := n^2 (n + 1)^2/4; Array[f, 39, 0] (* Robert G. Wilson v, Nov 16 2012 *)
    Table[CycleIndex[{{1, 2, 3, 4}, {3, 2, 1, 4}, {1, 4, 3, 2}, {3, 4, 1, 2}}, s] /. Table[s[i] -> n, {i, 1, 2}], {n, 0, 30}] (* Geoffrey Critzer, Jun 18 2014 *)
    Accumulate @ Range[0, 50]^2 (* Waldemar Puszkarz, Jan 24 2015 *)
    Binomial[Range[20], 2]^2 (* Eric W. Weisstein, Jan 02 2018 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 9, 36, 100}, 20] (* Eric W. Weisstein, Jan 02 2018 *)
    CoefficientList[Series[-((x (1 + 4 x + x^2))/(-1 + x)^5), {x, 0, 20}], x] (* Eric W. Weisstein, Jan 02 2018 *)
  • PARI
    a(n)=(n*(n+1)/2)^2
    
  • Python
    def A000537(n): return (n*(n+1)>>1)**2 # Chai Wah Wu, Oct 20 2023

Formula

a(n) = (n*(n+1)/2)^2 = A000217(n)^2 = Sum_{k=1..n} A000578(k), that is, 1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... + n)^2.
G.f.: (x+4*x^2+x^3)/(1-x)^5. - Simon Plouffe in his 1992 dissertation
a(n) = Sum ( Sum ( 1 + Sum (6*n) ) ), rephrasing the formula in A000578. - Xavier Acloque, Jan 21 2003
a(n) = Sum_{i=1..n} Sum_{j=1..n} i*j, row sums of A127777. - Alexander Adamchuk, Oct 24 2004
a(n) = A035287(n)/4. - Zerinvary Lajos, May 09 2007
This sequence could be obtained from the general formula n*(n+1)*(n+2)*(n+3)*...*(n+k)*(n*(n+k) + (k-1)*k/6)/((k+3)!/6) at k=1. - Alexander R. Povolotsky, May 17 2008
G.f.: x*F(3,3;1;x). - Paul Barry, Sep 18 2008
Sum_{k > 0} 1/a(k) = (4/3)*(Pi^2-9). - Jaume Oliver Lafont, Sep 20 2009
a(n) = Sum_{1 <= k <= m <= n} A176271(m,k). - Reinhard Zumkeller, Apr 13 2010
a(n) = Sum_{i=1..n} J_3(i)*floor(n/i), where J_ 3 is A059376. - Enrique Pérez Herrero, Feb 26 2012
a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} min(i,j,k). - Enrique Pérez Herrero, Feb 26 2013 [corrected by Ridouane Oudra, Mar 05 2025]
a(n) = 6*C(n+2,4) + C(n+1,2) = 6*A000332(n+2) + A000217(n), (Knuth). - Gary Detlefs, Jan 02 2014
a(n) = -Sum_{j=1..3} j*Stirling1(n+1,n+1-j)*Stirling2(n+3-j,n). - Mircea Merca, Jan 25 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*(3-4*log(2)). - Vaclav Kotesovec, Feb 13 2015
a(n)*((s-2)*(s-3)/2) = P(3, P(s, n+1)) - P(s, P(3, n+1)), where P(s, m) = ((s-2)*m^2-(s-4)*m)/2 is the m-th s-gonal number. For s=7, 10*a(n) = A000217(A000566(n+1)) - A000566(A000217(n+1)). - Bruno Berselli, Aug 04 2015
From Ilya Gutkovskiy, Jul 03 2016: (Start)
E.g.f.: x*(4 + 14*x + 8*x^2 + x^3)*exp(x)/4.
Dirichlet g.f.: (zeta(s-4) + 2*zeta(s-3) + zeta(s-2))/4. (End)
a(n) = (Bernoulli(4, n+1) - Bernoulli(4, 1))/4, n >= 0, with the Bernoulli polynomial B(4, x) from row n=4 of A053382/A053383. See, e.g., the Ash-Gross reference, p. 62, eq. (6.3) for k=3. - Wolfdieter Lang, Mar 12 2017
a(n) = A000217((n+1)^2) - A000217(n+1)^2. - Bruno Berselli, Aug 31 2017
a(n) = n*binomial(n+2, 3) + binomial(n+2, 4) + binomial(n+1, 4). - Tony Foster III, Nov 14 2017
Another identity: ..., a(3) = (1/2)*(1*(2+4+6)+3*(4+6)+5*6) = 36, a(4) = (1/2)*(1*(2+4+6+8)+3*(4+6+8)+5*(6+8)+7*(8)) = 100, a(5) = (1/2)*(1*(2+4+6+8+10)+3*(4+6+8+10)+5*(6+8+10)+7*(8+10)+9*(10)) = 225, ... - J. M. Bergot, Aug 27 2022
Comment from Michael Somos, Aug 28 2022: (Start)
The previous comment expresses a(n) as the sum of all of the n X n multiplication table array entries.
For example, for n = 4:
1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
This array sum can be split up as follows:
+---+---------------+
| 0 | 1 2 3 4 | (0+1)*(1+2+3+4)
| +---+-----------+
| 0 | 2 | 4 6 8 | (1+2)*(2+3+4)
| | +---+-------+
| 0 | 3 | 6 | 9 12 | (2+3)*(3+4)
| | | +---+---+
| 0 | 4 | 8 |12 |16 | (3+4)*(4)
+---+---+---+---+---+
This kind of row+column sums was used by Ramanujan and others for summing Lambert series. (End)
a(n) = 6*A000332(n+4) - 12*A000292(n+1) + 7*A000217(n+1) - n - 1. - Adam Mohamed, Sep 05 2024

Extensions

Edited by M. F. Hasler, May 02 2015

A008588 Nonnegative multiples of 6.

Original entry on oeis.org

0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 252, 258, 264, 270, 276, 282, 288, 294, 300, 306, 312, 318, 324, 330, 336, 342, 348
Offset: 0

Views

Author

Keywords

Comments

For n > 3, the number of squares on the infinite 3-column half-strip chessboard at <= n knight moves from any fixed point on the short edge.
Second differences of A000578. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
A008615(a(n)) = n. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A001018(n). - Reinhard Zumkeller, Feb 24 2009
These numbers can be written as the sum of four cubes (i.e., 6*n = (n+1)^3 + (n-1)^3 + (-n)^3 + (-n)^3). - Arkadiusz Wesolowski, Aug 09 2013
A122841(a(n)) > 0 for n > 0. - Reinhard Zumkeller, Nov 10 2013
Surface area of a cube with side sqrt(n). - Wesley Ivan Hurt, Aug 24 2014
a(n) is representable as a sum of three but not two consecutive nonnegative integers, e.g., 6 = 1 + 2 + 3, 12 = 3 + 4 + 5, 18 = 5 + 6 + 7, etc. (see A138591). - Martin Renner, Mar 14 2016 (Corrected by David A. Corneth, Aug 12 2016)
Numbers with three consecutive divisors: for some k, each of k, k+1, and k+2 divide n. - Charles R Greathouse IV, May 16 2016
Numbers k for which {phi(k),phi(2k),phi(3k)} is an arithmetic progression. - Ivan Neretin, Aug 12 2016

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 81.

Crossrefs

Essentially the same as A008458.
Cf. A044102 (subsequence).

Programs

Formula

From Vincenzo Librandi, Dec 24 2010: (Start)
a(n) = 6*n = 2*a(n-1) - a(n-2).
G.f.: 6*x/(1-x)^2. (End)
a(n) = Sum_{k>=0} A030308(n,k)*6*2^k. - Philippe Deléham, Oct 24 2011
a(n) = Sum_{k=2n-1..2n+1} k. - Wesley Ivan Hurt, Nov 22 2015
From Ilya Gutkovskiy, Aug 12 2016: (Start)
E.g.f.: 6*x*exp(x).
Convolution of A010722 and A057427.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/6 = A002162*A020793. (End)
a(n) = 6 * A001477(n). - David A. Corneth, Aug 12 2016

A008574 a(0) = 1, thereafter a(n) = 4n.

Original entry on oeis.org

1, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232
Offset: 0

Views

Author

N. J. A. Sloane; entry revised Aug 24 2014

Keywords

Comments

Number of squares on the perimeter of an (n+1) X (n+1) board. - Jon Perry, Jul 27 2003
Coordination sequence for square lattice (or equivalently the planar net 4.4.4.4).
Apparently also the coordination sequence for the planar net 3.4.6.4. - Darrah Chavey, Nov 23 2014
From N. J. A. Sloane, Nov 26 2014: (Start)
I confirm that this is indeed the coordination sequence for the planar net 3.4.6.4. The points at graph distance n from a fixed point in this net essentially lie on a hexagon (see illustration in link).
If n = 3k, k >= 1, there are 2k + 1 nodes on each edge of the hexagon. This counts the corners of the hexagon twice, so the number of points in the shell is 6(2k + 1) - 6 = 4n. If n = 3k + 1, the numbers of points on the six edges of the hexagon are 2k + 2 (4 times) and 2k + 1 (twice), for a total of 12k + 10 - 6 = 4n. If n = 3k + 2 the numbers are 2k + 2 (4 times) and 2k + 3 twice, and again we get 4n points.
The illustration shows shells 0 through 12, as well as the hexagons formed by shells 9 (green, 36 points), 10 (black, 40 points), 11 (red, 44 points), and 12 (blue, 48 points).
It is clear from the net that this period-3 structure continues forever, and establishes the theorem.
In contrast, for the 4.4.4.4 planar net, the successive shells are diamonds instead of hexagons, and again the n-th shell (n > 0) contains 4n points.
Of course the two nets are very different, since 4.4.4.4 has the symmetry of the square, while 3.4.6.4 has only mirror symmetry (with respect to a point), and has the symmetry of a regular hexagon with respect to the center of any of the 12-gons. (End)
Also the coordination sequence for a 6.6.6.6 point in the 3-transitive tiling {4.6.6, 6.6.6, 6.6.6.6}, see A265045, A265046. - N. J. A. Sloane, Dec 27 2015
Also the coordination sequence for 2-dimensional cyclotomic lattice Z[zeta_4].
Susceptibility series H_1 for 2-dimensional Ising model (divided by 2).
Also the Engel expansion of exp^(1/4); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002
This sequence differs from A008586, multiples of 4, only in its initial term. - Alonso del Arte, Apr 14 2011
Number of 2 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00,0), (00;1) and (10;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2 and j1 < j2 and these elements are in same relative order as those in the triple (x,y,z). - Sergey Kitaev, Nov 11 2004
Central terms of the triangle in A118013. - Reinhard Zumkeller, Apr 10 2006
Also the coordination sequence for the htb net. - N. J. A. Sloane, Mar 31 2018
This is almost certainly also the coordination sequence for Dual(3.3.4.3.4) with respect to a tetravalent node. - Tom Karzes, Apr 01 2020
Minimal number of segments (equivalently, corners) in a rook circuit of a 2n X 2n board (maximal number is A085622). - Ruediger Jehn, Jan 02 2021

Examples

			From _Omar E. Pol_, Aug 20 2011 (Start):
Illustration of initial terms as perimeters of squares (cf. Perry's comment above):
.                                         o o o o o o
.                             o o o o o   o         o
.                   o o o o   o       o   o         o
.           o o o   o     o   o       o   o         o
.     o o   o   o   o     o   o       o   o         o
. o   o o   o o o   o o o o   o o o o o   o o o o o o
.
. 1    4      8        12         16           20
(End)
		

Crossrefs

Cf. A001844 (partial sums), A008586, A054275, A054410, A054389, A054764.
Convolution square of A040000.
Row sums of A130323 and A131032.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579(3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529(3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.
See also A265045, A265046.

Programs

  • Haskell
    a008574 0 = 1; a008574 n = 4 * n
    a008574_list = 1 : [4, 8 ..]  -- Reinhard Zumkeller, Apr 16 2015
  • Mathematica
    f[0] = 1; f[n_] := 4 n; Array[f, 59, 0] (* or *)
    CoefficientList[ Series[(1 + x)^2/(1 - x)^2, {x, 0, 58}], x] (* Robert G. Wilson v, Jan 02 2011 *)
    Join[{1},Range[4,232,4]] (* Harvey P. Dale, Aug 19 2011 *)
    a[ n_] := 4 n + Boole[n == 0]; (* Michael Somos, Jan 07 2019 *)
  • PARI
    {a(n) = 4*n + !n}; /* Michael Somos, Apr 16 2007 */
    

Formula

Binomial transform is A000337 (dropping the 0 there). - Paul Barry, Jul 21 2003
Euler transform of length 2 sequence [4, -2]. - Michael Somos, Apr 16 2007
G.f.: ((1 + x) / (1 - x))^2. E.g.f.: 1 + 4*x*exp(x). - Michael Somos, Apr 16 2007
a(-n) = -a(n) unless n = 0. - Michael Somos, Apr 16 2007
G.f.: exp(4*atanh(x)). - Jaume Oliver Lafont, Oct 20 2009
a(n) = a(n-1) + 4, n > 1. - Vincenzo Librandi, Dec 31 2010
a(n) = A005408(n-1) + A005408(n), n > 1. - Ivan N. Ianakiev, Jul 16 2012
a(n) = 4*n = A008586(n), n >= 1. - Tom Karzes, Apr 01 2020

A008486 Expansion of (1 + x + x^2)/(1 - x)^2.

Original entry on oeis.org

1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177, 180, 183, 186
Offset: 0

Views

Author

Keywords

Comments

Also the Engel expansion of exp^(1/3); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002
Coordination sequence for planar net 6^3 (the graphite net, or the graphene crystal) - that is, the number of atoms at graph distance n from any fixed atom. Also for the hcb or honeycomb net. - N. J. A. Sloane, Jan 06 2013, Mar 31 2018
Coordination sequence for 2-dimensional cyclotomic lattice Z[zeta_3].
Conjecture: This is also the maximum number of edges possible in a planar simple graph with n+2 vertices. - Dmitry Kamenetsky, Jun 29 2008
The conjecture is correct. Proof: For n=0 the theorem holds, the maximum planar graph has n+2=2 vertices and 1 edge. Now suppose that we have a connected planar graph with at least 3 vertices. If it contains a face that is not a triangle, we can add an edge that divides this face into two without breaking its planarity. Hence all maximum planar graphs are triangulations. Euler's formula for planar graphs states that in any planar simple graph with V vertices, E edges and F faces we have V+F-E=2. If all faces are triangles, then F=2E/3, which gives us E=3V-6. Hence for n>0 each maximum planar simple graph with n+2 vertices has 3n edges. - Michal Forisek, Apr 23 2009
a(n) = sum of natural numbers m such that n - 1 <= m <= n + 1. Generalization: If a(n,k) = sum of natural numbers m such that n - k <= m <= n + k (k >= 1) then a(n,k) = (k + n)*(k + n + 1)/2 = A000217(k+n) for 0 <= n <= k, a(n,k) = a(n-1,k) +2k + 1 = ((k + n - 1)*(k + n)/2) + 2k + 1 = A000217(k+n-1) +2k +1 for n >= k + 1 (see e.g. A008486). - Jaroslav Krizek, Nov 18 2009
a(n) = partial sums of A158799(n). Partial sums of a(n) = A005448(n). - Jaroslav Krizek, Dec 06 2009
Integers n dividing a(n) = a(n-1) - a(n-2) with initial conditions a(0)=0, a(1)=1 (see A128834 with offset 0). - Thomas M. Bridge, Nov 03 2013
a(n) is conjectured to be the number of polygons added after n iterations of the polygon expansions (type A, B, C, D & E) shown in the Ngaokrajang link. The patterns are supposed to become the planar Archimedean net 3.3.3.3.3.3, 3.6.3.6, 3.12.12, 3.3.3.3.6 and 4.6.12 respectively when n - > infinity. - Kival Ngaokrajang, Dec 28 2014
Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I. - Ray Chandler, Nov 21 2016
Conjecture: let m = n + 2, p is the polyhedron formed by the convex hull of m points, q is the number of quadrilateral faces of p (see the Wikipedia link below), and f(m) = a(n) - q. Then f(m) would be the solution of the Thompson problem for all m in 3-space. - Sergey Pavlov, Feb 03 2017
Also, sequence defined by a(0)=1, a(1)=3, c(0)=2, c(1)=4; and thereafter a(n) = c(n-1) + c(n-2), and c consists of the numbers missing from a (see A001651). - Ivan Neretin, Mar 28 2017

Examples

			G.f. = 1 + 3*x + 6*x^2 + 9*x^3 + 12*x^4 + 15*x^5 + 18*x^6 + 21*x^7 + 24*x^8 + ...
From _Omar E. Pol_, Aug 20 2011: (Start)
Illustration of initial terms as triangles:
.                                              o
.                                 o           o o
.                      o         o o         o   o
.             o       o o       o   o       o     o
.      o     o o     o   o     o     o     o       o
. o   o o   o o o   o o o o   o o o o o   o o o o o o
.
. 1    3      6        9          12           15
(End)
		

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 158.

Crossrefs

Partial sums give A005448.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574(4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579(3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529(3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Haskell
    a008486 0 = 1; a008486 n = 3 * n
    a008486_list = 1 : [3, 6 ..]  -- Reinhard Zumkeller, Apr 17 2015
  • Magma
    [0^n+3*n: n in [0..90] ]; // Vincenzo Librandi, Aug 21 2011
    
  • Mathematica
    CoefficientList[Series[(1 + x + x^2) / (1 - x)^2, {x, 0, 80}], x] (* Vincenzo Librandi, Nov 23 2014 *)
    a[ n_] := If[ n == 0, 1, 3 n]; (* Michael Somos, Apr 17 2015 *)
  • PARI
    {a(n) = if( n==0, 1, 3 * n)}; /* Michael Somos, May 05 2015 */
    

Formula

a(0) = 1; a(n) = 3*n = A008585(n), n >= 1.
Euler transform of length 3 sequence [3, 0, -1]. - Michael Somos, Aug 04 2009
a(n) = a(n-1) + 3 for n >= 2. - Jaroslav Krizek, Nov 18 2009
a(n) = 0^n + 3*n. - Vincenzo Librandi, Aug 21 2011
a(n) = -a(-n) unless n = 0. - Michael Somos, May 05 2015
E.g.f.: 1 + 3*exp(x)*x. - Stefano Spezia, Aug 07 2022

A298024 Expansion of (x^4+3*x^3+6*x^2+3*x+1)/((1-x)*(1-x^3)).

Original entry on oeis.org

1, 4, 10, 14, 18, 24, 28, 32, 38, 42, 46, 52, 56, 60, 66, 70, 74, 80, 84, 88, 94, 98, 102, 108, 112, 116, 122, 126, 130, 136, 140, 144, 150, 154, 158, 164, 168, 172, 178, 182, 186, 192, 196, 200, 206, 210, 214, 220, 224, 228, 234, 238, 242, 248, 252, 256, 262
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Coordination sequence for Dual(3^3.4^2) tiling with respect to a tetravalent node. This tiling is also called the prismatic pentagonal tiling, or the cem-d net. It is one of the 11 Laves tilings. (The identification of this coordination sequence with the g.f. in the definition was first conjectured by Colin Barker, Jan 22 2018.)
Also, coordination sequence for a tetravalent node in the "krl" 2-D tiling (or net).
Both of these identifications are easily established using the "coloring book" method - see the Goodman-Strauss & Sloane link.
For n>0, this is twice A047386 (numbers congruent to 0 or +-2 mod 7).
Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, 3rd row, second tiling. (For the krl tiling.)
  • B. Gruenbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987. See p. 96. (For the Dual(3^3.4^2) tiling.)

Crossrefs

Cf. A301298.
See A298025 for partial sums, A298022 for a trivalent node.
See also A047486.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    CoefficientList[Series[(x^4+3x^3+6x^2+3x+1)/((1-x)(1-x^3)),{x,0,60}],x] (* or *) LinearRecurrence[{1,0,1,-1},{1,4,10,14,18},80] (* Harvey P. Dale, Oct 03 2018 *)
  • PARI
    See Links section.

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. (Conjectured, correctly, by Colin Barker, Jan 22 2018.)

Extensions

More terms from Rémy Sigrist, Jan 21 2018
Entry revised by N. J. A. Sloane, Mar 25 2018

A219529 Coordination sequence for 3.3.4.3.4 Archimedean tiling.

Original entry on oeis.org

1, 5, 11, 16, 21, 27, 32, 37, 43, 48, 53, 59, 64, 69, 75, 80, 85, 91, 96, 101, 107, 112, 117, 123, 128, 133, 139, 144, 149, 155, 160, 165, 171, 176, 181, 187, 192, 197, 203, 208, 213, 219, 224, 229, 235, 240, 245, 251, 256, 261, 267, 272, 277, 283, 288, 293, 299
Offset: 0

Views

Author

Allan C. Wechsler, Nov 21 2012

Keywords

Comments

a(n) is the number of vertices of the 3.3.4.3.4 tiling (which has three triangles and two squares, in the given cyclic order, meeting at each vertex) whose shortest path connecting them to a given origin vertex contains n edges.
This is the dual tiling to the Cairo tiling (cf. A296368). - N. J. A. Sloane, Nov 02 2018
First few terms provided by Allan C. Wechsler; Fred Lunnon and Fred Helenius gave the next few; Fred Lunnon suggested that the recurrence was a(n+3) = a(n) + 16 for n > 1. [This conjecture is true - see the CGS-NJAS link for a proof. - N. J. A. Sloane, Dec 31 2017]
Appears also to be coordination sequence for node of type V2 in "krd" 2-D tiling (or net). This should be easy to prove by the coloring book method (see link). - N. J. A. Sloane, Mar 25 2018
Appears also to be coordination sequence for node of type V1 in "krj" 2-D tiling (or net). This also should be easy to prove by the coloring book method (see link). - N. J. A. Sloane, Mar 26 2018
First differences of A301696. - Klaus Purath, May 23 2020

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 1st row, 2nd tiling, also 2nd row, third tiling.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Haskell
    -- Very slow, could certainly be accelerated.  SST stands for Snub Square Tiling.
    setUnion [] l2 = l2
    setUnion (a:rst) l2 = if (elem a l2) then doRest else (a:doRest)
      where doRest = setUnion rst l2
    setDifference [] l2 = []
    setDifference (a:rst) l2 = if (elem a l2) then doRest else (a:doRest)
      where doRest = setDifference rst l2
    adjust k = (if (even k) then 1 else -1)
    weirdAdjacent (x,y) = (x+(adjust y),y+(adjust x))
    sstAdjacents (x,y) = [(x+1,y),(x-1,y),(x,y+1),(x,y-1),(weirdAdjacent (x,y))]
    sstNeighbors core = foldl setUnion core (map sstAdjacents core)
    sstGlob n core = if (n == 0) then core else (sstGlob (n-1) (sstNeighbors core))
    sstHalo core = setDifference (sstNeighbors core) core
    origin = [(0,0)]
    a219529 n = length (sstHalo (sstGlob (n-1) origin))
    -- Allan C. Wechsler, Nov 30 2012
    
  • Maple
    A219529:= n -> `if`(n=0, 1, (16*n +1 - `mod`(n+1,3))/3);
    seq(A219529(n), n = 0..60); # G. C. Greubel, May 27 2020
  • Mathematica
    Join[{1}, LinearRecurrence[{1,0,1,-1}, {5,11,16,21}, 60]] (* Jean-François Alcover, Dec 13 2018 *)
    Table[If[n==0, 1, (16*n +1 - Mod[n+1, 3])/3], {n, 0, 60}] (* G. C. Greubel, May 27 2020 *)
    CoefficientList[Series[(x+1)^4/((x^2+x+1)(x-1)^2),{x,0,70}],x] (* Harvey P. Dale, Jul 03 2021 *)
  • Sage
    [1]+[(16*n+1 -(n+1)%3)/3 for n in (1..60)] # G. C. Greubel, May 27 2020

Formula

Conjectured to be a(n) = floor((16n+1)/3) for n>0; a(0) = 1; this is a consequence of the suggested recurrence due to Lunnon (see comments). [This conjecture is true - see the CGS-NJAS link in A296368 for a proof. - N. J. A. Sloane, Dec 31 2017]
G.f.: (x+1)^4/((x^2+x+1)*(x-1)^2). - N. J. A. Sloane, Feb 07 2018
From G. C. Greubel, May 27 2020: (Start)
a(n) = (16*n - ChebyshevU(n-1, -1/2))/3 for n>0 with a(0)=1.
a(n) = (A008598(n) - A049347(n-1))/3 for n >0 with a(0)=1. (End)

Extensions

Corrected attributions and epistemological status in Comments; provided slow Haskell code - Allan C. Wechsler, Nov 30 2012
Extended by Joseph Myers, Dec 04 2014

A032528 Concentric hexagonal numbers: floor(3*n^2/2).

Original entry on oeis.org

0, 1, 6, 13, 24, 37, 54, 73, 96, 121, 150, 181, 216, 253, 294, 337, 384, 433, 486, 541, 600, 661, 726, 793, 864, 937, 1014, 1093, 1176, 1261, 1350, 1441, 1536, 1633, 1734, 1837, 1944, 2053, 2166, 2281, 2400, 2521, 2646, 2773, 2904, 3037, 3174, 3313, 3456, 3601, 3750
Offset: 0

Views

Author

Keywords

Comments

From Omar E. Pol, Aug 20 2011: (Start)
Cellular automaton on the hexagonal net. The sequence gives the number of "ON" cells in the structure after n-th stage. A007310 gives the first differences. For a definition without words see the illustration of initial terms in the example section. Note that the cells become intermittent. A083577 gives the primes of this sequences.
A033581 and A003154 interleaved.
Row sums of an infinite square array T(n,k) in which column k lists 2*k-1 zeros followed by the numbers A008458 (see example). (End)
Sequence found by reading the line from 0, in the direction 0, 1, ... and the same line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Main axis perpendicular to A045943 in the same spiral. - Omar E. Pol, Sep 08 2011

Examples

			From _Omar E. Pol_, Aug 20 2011: (Start)
Using the numbers A008458 we can write:
  0, 1, 6, 12, 18, 24, 30, 36, 42,  48,  54, ...
  0, 0, 0,  1,  6, 12, 18, 24, 30,  36,  42, ...
  0, 0, 0,  0,  0,  1,  6, 12, 18,  24,  30, ...
  0, 0, 0,  0,  0,  0,  0,  1,  6,  12,  18, ...
  0, 0, 0,  0,  0,  0,  0,  0,  0,   1,   6, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 6, 13, 24, 37, 54, 73, 96, 121, 150, ...
...
Illustration of initial terms as concentric hexagons:
.
.                                         o o o o o
.                         o o o o        o         o
.             o o o      o       o      o   o o o   o
.     o o    o     o    o   o o   o    o   o     o   o
. o  o   o  o   o   o  o   o   o   o  o   o   o   o   o
.     o o    o     o    o   o o   o    o   o     o   o
.             o o o      o       o      o   o o o   o
.                         o o o o        o         o
.                                         o o o o o
.
. 1    6        13           24               37
.
(End)
		

Crossrefs

Programs

Formula

From Joerg Arndt, Aug 22 2011: (Start)
G.f.: (x+4*x^2+x^3)/(1-2*x+2*x^3-x^4) = x*(1+4*x+x^2)/((1+x)*(1-x)^3).
a(n) = +2*a(n-1) -2*a(n-3) +1*a(n-4). (End)
a(n) = (6*n^2+(-1)^n-1)/4. - Bruno Berselli, Aug 22 2011
a(n) = A184533(n), n >= 2. - Clark Kimberling, Apr 20 2012
First differences of A011934: a(n) = A011934(n) - A011934(n-1) for n>0. - Franz Vrabec, Feb 17 2013
From Paul Curtz, Mar 31 2019: (Start)
a(-n) = a(n).
a(n) = a(n-2) + 6*(n-1) for n > 1.
a(2*n) = A033581(n).
a(2*n+1) = A003154(n+1). (End)
E.g.f.: (3*x*(x + 1)*cosh(x) + (3*x^2 + 3*x - 1)*sinh(x))/2. - Stefano Spezia, Aug 19 2022
Sum_{n>=1} 1/a(n) = Pi^2/36 + tan(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)). - Amiram Eldar, Jan 16 2023

Extensions

New name and more terms a(41)-a(50) from Omar E. Pol, Aug 20 2011

A008576 Coordination sequence for planar net 4.8.8.

Original entry on oeis.org

1, 3, 5, 8, 11, 13, 16, 19, 21, 24, 27, 29, 32, 35, 37, 40, 43, 45, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 75, 77, 80, 83, 85, 88, 91, 93, 96, 99, 101, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 131, 133
Offset: 0

Views

Author

Keywords

Comments

Also, growth series for the affine Coxeter (or Weyl) groups B_2. - N. J. A. Sloane, Jan 11 2016

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
  • A. V. Shutov, On the number of words of a given length in plane crystallographic groups (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 302 (2003), Anal. Teor. Chisel i Teor. Funkts. 19, 188--197, 203; translation in J. Math. Sci. (N.Y.) 129 (2005), no. 3, 3922-3926 [MR2023041]. See Table 1.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579(3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529(3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
For partial sums see A008577.
The growth series for the finite Coxeter (or Weyl) groups B_3 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Maple
    if n mod 3 = 0 then 8*n/3 elif n mod 3 = 1 then 8*(n-1)/3+3 else 8*(n-2)/3+5 fi;
  • Mathematica
    cspn[n_]:=Module[{c=Mod[n,3]},Which[c==0,(8n)/3,c==1,(8(n-1))/3+3,True,(8(n-2))/3+5]]; Join[{1},Array[cspn,50]] (* or *) Join[{1}, LinearRecurrence[ {1,0,1,-1},{3,5,8,11},50]] (* Harvey P. Dale, Nov 24 2011 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,1,0,1]^n*[1;3;5;8])[1,1] \\ Charles R Greathouse IV, Apr 08 2016

Formula

G.f.: ((1+x)^2*(1+x^2))/((1-x)^2*(1+x+x^2)). - Ralf Stephan, Apr 24 2004
a(0)=1, a(1)=3, a(2)=5, a(3)=8, a(4)=11, a(n) = a(n-1) + a(n-3) - a(n-4). - Harvey P. Dale, Nov 24 2011
a(0)=1; thereafter a(3k)=8k, a(3k+1)=8k+3, a(3k+2)=8k+5. - N. J. A. Sloane, Dec 22 2015
The above g.f. and recurrence were originally empirical observations, but I now have a proof (details will be added later). This also justifies the Maple and Mma programs and the b-file. - N. J. A. Sloane, Dec 22 2015
Sum of alternate terms of A042965 (numbers not congruent to 2 mod 4), such that A042965(n) = A042965(n+1) + A042965(n-1). - Gary W. Adamson, Sep 12 2007
a(n) = (2/9)*(12*n + (3/2)*A102283(n)) for n > 0. - Stefano Spezia, Aug 07 2022
Showing 1-10 of 58 results. Next