cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Waldemar Puszkarz

Waldemar Puszkarz's wiki page.

Waldemar Puszkarz has authored 56 sequences. Here are the ten most recent ones:

A377134 Abundant numbers k such that k^2 + A033880(k)^2 is a perfect square.

Original entry on oeis.org

336, 1080, 3078, 6048, 6552, 19845, 47616, 239760, 435708, 599400, 760320, 873180, 997920, 1468800, 1602300, 2004480, 4312440, 4612608, 4713984, 10181808, 10665984, 11554816, 12160512, 24149664, 31244850, 46431744, 56439504, 64995840, 116958492
Offset: 1

Author

Waldemar Puszkarz, Oct 17 2024

Keywords

Comments

These abundant numbers along with their abundances form the legs of an integral Pythagorean triangle.
Odd terms are very rare: 19845 is the only one up to 10^9.
19845 is the only odd term up to 4*10^10. - Amiram Eldar, Mar 11 2025

Examples

			336 is a term because its abundance is 320 and 320^2 + 336^2 = 464^2.
		

Crossrefs

Programs

  • Mathematica
    l={}; Do[a=DivisorSigma[1,n]-2*n; If[a>0&&IntegerQ@Sqrt[n^2+a^2], AppendTo[l, n]], {n, 12, 2*10^8}]; l
  • PARI
    for(n=12, 2*10^8, a=sigma(n)-2*n; a>0&&issquare(n^2+a^2)&&print1(n", "))
    
  • Python
    import sympy as sp
    for i in range(12, 200000000):
        a=sp.ntheory.factor_.divisor_sigma(i) - 2*i
        if a>0 and sp.ntheory.primetest.is_square(i*i+a*a):
            print(i, end=", ")

A377121 Numbers whose totient is refactorable.

Original entry on oeis.org

1, 2, 3, 4, 6, 13, 15, 16, 19, 20, 21, 24, 26, 27, 28, 30, 35, 36, 37, 38, 39, 41, 42, 45, 52, 54, 55, 56, 57, 61, 63, 70, 72, 73, 74, 75, 76, 77, 78, 82, 84, 87, 88, 89, 90, 91, 93, 95, 97, 99, 100, 108, 109, 110, 111, 114, 115, 116, 117, 119, 122, 123, 124, 126, 129, 132, 133, 135, 137, 146, 147, 148, 150, 152, 153
Offset: 1

Author

Waldemar Puszkarz, Oct 17 2024

Keywords

Comments

If k is an odd term, 2*k is also a term due to the multiplicative nature of the totient function and their totients are equal.

Examples

			3, 4, and 6 are terms as their totients equal 2, which is the second refactorable number.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local p;
      p:= numtheory:-phi(n);
      p mod numtheory:-tau(p) = 0
    end proc:
    select(filter, [$1..200]); # Robert Israel, Dec 12 2024
  • Mathematica
    Select[Range[200], Mod[EulerPhi[#], DivisorSigma[0,EulerPhi[#]]]==0&]
  • PARI
    for(n=1, 200, a=eulerphi(n); a%numdiv(a)==0&&print1(n", "))
    
  • Python
    from sympy import divisor_sigma, totient
    for i in range(1, 200):
        if totient(i)%divisor_sigma(totient(i), 0)==0:
            print(i, end=", ")

A376119 Abundant numbers that are perfect powers.

Original entry on oeis.org

36, 100, 144, 196, 216, 324, 400, 576, 784, 900, 1000, 1296, 1600, 1728, 1764, 1936, 2304, 2500, 2704, 2744, 2916, 3136, 3600, 4356, 4624, 4900, 5184, 5776, 5832, 6084, 6400, 7056, 7744, 7776, 8000, 8100, 8464, 9216, 9604, 10000, 10404, 10648, 10816, 11025, 11664, 12100, 12544
Offset: 1

Author

Waldemar Puszkarz, Sep 11 2024

Keywords

Comments

Intersection of A001597 and A005101.

Examples

			36 is a term being a power (36=6^2) and an abundant number as a multiple of 6.
		

Crossrefs

Programs

  • Maple
    N:= 20000: # to get terms <= N
    isab:= proc(n) local F, t;
      F:= ifactors(n)[2];
      mul((t[1]^(t[2]+1)-1)/(t[1]-1), t = F) > 2*n
    end proc:
    S:= select(isab, {seq(seq(x^i,i=2..ilog[x](N)),x=2..isqrt(N))}):
    sort(convert(S,list)); # Robert Israel, Sep 12 2024
  • Mathematica
    Select[Range[2*10^4], DivisorSigma[1,#]-2#>0&&GCD@@FactorInteger[#][[All, 2]]>1&]
  • PARI
    ok(n)=sigma(n)-2*n>0 && ispower(n)

A376120 Refactorable numbers that are perfect powers.

Original entry on oeis.org

1, 8, 9, 36, 128, 225, 441, 625, 1089, 1521, 2025, 2601, 3249, 3600, 4761, 5625, 6561, 7569, 7776, 8100, 8649, 10000, 12321, 15129, 16641, 19881, 21952, 22500, 25281, 26244, 28224, 31329, 32400, 32768, 33489, 35721, 40401, 45369, 47961, 50625, 56169, 62001, 64000, 71289, 84681, 90000
Offset: 1

Author

Waldemar Puszkarz, Sep 11 2024

Keywords

Comments

Intersection of A001597 and A033950.

Examples

			8 is a perfect power, as 8=2^3, and it is also a refactorable numbers, being divisible by its number of divisors (4).
		

Crossrefs

Cf. A001597 (perfect powers), A033950 (refactorable numbers).

Programs

  • Mathematica
    Join[{1}, Select[Range[10^5], Divisible[#, DivisorSigma[0,#]]&&GCD@@FactorInteger[#][[All, 2]]>1&]]
  • PARI
    ok(n) = n==1 || (n%numdiv(n)==0&&ispower(n))
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import mobius, integer_nthroot, factorint
    def A376120_gen(): # generator of terms
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m = 1
        for n in count(1):
            m = bisection(lambda x:f(x)+n,m,m)
            if not m%prod(e+1 for e in factorint(m).values()): yield m
    A376120_list = list(islice(A376120_gen(),40)) # Chai Wah Wu, Oct 04 2024

A376114 Refactorable numbers that are twice a square.

Original entry on oeis.org

2, 8, 18, 72, 128, 288, 450, 882, 1152, 1250, 1800, 2178, 3042, 3528, 4050, 5000, 5202, 6498, 8712, 9522, 11250, 12168, 13122, 15138, 16200, 17298, 18432, 20808, 24642, 25992, 28800, 30258, 32768, 33282, 38088, 39762, 45000, 50562, 52488, 56448, 60552, 62658, 64800, 66978, 69192, 71442, 80000
Offset: 1

Author

Waldemar Puszkarz, Sep 10 2024

Keywords

Comments

Intersection of A001105 and A033950.

Examples

			8 is a term because it is twice 4, which is square, and 8 is refactorable.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) n mod numtheory:-tau(n) = 0 end proc:
    select(filter, [seq(2*i^2,i=1..1000)]); # Robert Israel, Oct 10 2024
  • Mathematica
    Select[Range[2,10^5], IntegerQ@Sqrt[#/2]&&Divisible[#, DivisorSigma[0,#]]&]
  • PARI
    ok(n)=n%numdiv(n)==0&&issquare(n/2)
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A376114_gen(): # generator of terms
        for n in count(1):
            k = prod((e<<1|1)+(p==2) for p, e in factorint(n).items())
            if not (m:=n**2<<1)%k: yield m
    A376114_list = list(islice(A376114_gen(),47)) # Chai Wah Wu, Oct 04 2024

Formula

Conjecture: a(n) = A181795(n)/2.

A361634 Integers whose number of square divisors is coprime to the number of their nonsquare divisors.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 48, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94
Offset: 1

Author

Waldemar Puszkarz, Mar 19 2023

Keywords

Comments

Appears to be a supersequence of A210490, and so also of positive squares and squarefree numbers (A005117). The first term that belongs in here but not in A210490 is 48. The nonsquarefree terms that are not squares are of the form p^(4k)*a, where a is a squarefree number, p is prime, and k > 0. About half of perfect numbers are of this form; one example is 496 = 2^4*31. The sequence has an asymptotic density of about 0.6420.

Examples

			48 has 3 square divisors (1, 4, and 16) and 7 nonsquare ones. Consequently, gcd(3,7)=1, thus 48 is a term.
		

Crossrefs

Cf. A210490, A005117 (subsequences), A046951 (number of square divisors), A056595 (number of nonsquare divisors).

Programs

  • Mathematica
    Select[Range[100],CoprimeQ[Total@(Boole/@IntegerQ/@Sqrt/@Divisors[#]),DivisorSigma[0,#]-Total@(Boole/@IntegerQ/@Sqrt/@Divisors[#])]&]
  • PARI
    for(n=1, 100, a=divisors(n); c=0; for(i=1, #a, issquare(a[i])&&c++); gcd(#a-c, c)==1&&print1(n, ", "))
    
  • PARI
    isok(n) = gcd(numdiv(n), numdiv(sqrtint(n/core(n))))==1 \\ Andrew Howroyd, Mar 19 2023

A301975 Numbers whose abundance is divisible by its number of divisors.

Original entry on oeis.org

1, 3, 5, 6, 7, 11, 13, 14, 17, 19, 22, 23, 28, 29, 31, 37, 38, 41, 43, 45, 46, 47, 52, 53, 56, 59, 60, 61, 62, 67, 71, 73, 76, 79, 83, 86, 89, 94, 96, 97, 99, 101, 103, 107, 109, 113, 118, 124, 126, 127, 130, 131, 132, 134, 137, 139, 142, 147, 148, 149, 150, 151, 153, 157, 158, 163, 166, 167, 168, 170, 172, 173, 175, 176, 179
Offset: 1

Author

Waldemar Puszkarz, Mar 29 2018

Keywords

Comments

Numbers n such that f(n) = A033880(n)/A000005(n) is an integer.
Perfect numbers (A000396) and odd primes (A065091) are members, unified (along with 1) into a subsequence on which abs(f(n)) reaches record extrema. For perfect numbers, these are global minima, for the other terms, maxima.
Another notable subsequence is defined by f(n)=1: numbers whose abundance equals their number of divisors. They all belong to A056075. The first 3 terms are 56, 7192, 7232. There are 11 of them up to 10^9.

Examples

			11 is a term as its abundance is -10 and its number of divisors is 2, the former number being divisible by the latter.
		

Crossrefs

Cf. A033880 (abundance), A000005 (number of divisors), A065091, A000396 (subsequences), A056075 (related sequence).

Programs

  • Mathematica
    Select[Range[180], Divisible[DivisorSigma[1,#]-2#, DivisorSigma[0,#]]&]
  • PARI
    for(n=1, 180, ((sigma(n)-2*n)%numdiv(n)==0) && print1(n ", "))
    
  • PARI
    isok(n) = !((sigma(n)-2*n)%numdiv(n)); \\ Michel Marcus, Apr 09 2018

A301859 Abundant numbers whose abundance is a perfect number.

Original entry on oeis.org

48, 2002, 2632, 4540, 5170, 6952, 8925, 29056, 32445, 32980, 88330, 133042, 174856, 189472, 280228, 442365, 518368, 566752, 892552, 1266952, 2030368, 2052256, 2218450, 3959752, 4120672, 4558936, 5568448, 9071752, 15921112, 38551936, 65969536, 70114936, 88149352, 97364848
Offset: 1

Author

Waldemar Puszkarz, Mar 27 2018

Keywords

Comments

There are 34 terms up to 10^8. The abundance of odd terms (only 3 terms) is 6 (see also A087167). The abundance of even terms is 28, 496, 8128, and 33550336 (for 97364848). There exist deficient numbers whose abundance is a perfect number in absolute terms, e.g., 7, 29, 62.

Examples

			48 is a term as it is abundant and its abundance, sigma(48)-2*48 = 28, is the second perfect number.
		

Crossrefs

Cf. A005101 (abundant numbers), A033880 (abundance), A000396 (perfect numbers), A087167, A088834, A088012, A077374 (sequences related to the odd terms of this sequence).

Programs

  • Mathematica
    Select[Range[10^8], PerfectNumberQ[DivisorSigma[1,# ]-2#]&]
  • PARI
    for(n=1,10^8, a=sigma(n)-2*n; a>0&&sigma(a)==2*a&&print1(n ","))

A302125 Numbers whose deficiency is a perfect number.

Original entry on oeis.org

7, 15, 29, 52, 62, 182, 230, 315, 344, 592, 944, 998, 1155, 2012, 2570, 4028, 6710, 15128, 19688, 20264, 30248, 36224, 38252, 40730, 43964, 52088, 90332, 96128, 168116, 195224, 258512, 262112, 451952, 538112, 991904, 1209632, 1237856, 1659128, 2080544, 2085710, 2102272, 2186132
Offset: 1

Author

Keywords

Comments

Subsequence of deficient numbers (A005100) whose deficiency (A033879) is a member of perfect numbers (A000396).

Examples

			52 is in the sequence since the divisors of 52 are {1, 2, 4, 13, 26 & 52} so d(52) = 98 and 2*52 - 98 = 6, a perfect number.
		

Crossrefs

Cf. A000396 (perfect numbers), A033879 (deficiency), A005100 (deficient numbers), A141548 (subsequence), A301859 (related sequence).

Programs

  • Mathematica
    fQ[n_] := PerfectNumberQ[2n - DivisorSigma[1, n]]; Select[ Range@ 2500000, fQ]
  • PARI
    for(n=1,25*10^5, d=2*n-sigma(n); d>0&&sigma(d)==2*d&&print1(n ","))

A301561 Sphenic Fibonacci numbers.

Original entry on oeis.org

610, 987, 10946, 3524578, 9227465, 24157817, 39088169, 63245986, 1836311903, 7778742049, 20365011074, 591286729879, 4052739537881, 17167680177565, 44945570212853, 61305790721611591, 420196140727489673, 1500520536206896083277, 6356306993006846248183
Offset: 1

Author

Waldemar Puszkarz, Mar 23 2018

Keywords

Comments

Intersection of A000045 and A007304. There are 28 sphenic numbers among the first 200 positive Fibonacci numbers.

Examples

			610 is a term since it is a Fibonacci number that is a product of 3 distinct primes, 610=2*5*61, which makes it a sphenic number.
		

Crossrefs

Cf. A000045, A007304, A061305 (squarefree Fibonaccis), A137563 (Fibonaccis with 3 distinct primes).

Programs

  • Mathematica
    Select[Fibonacci@Range[120], SquareFreeQ[#]&&PrimeNu[#]==3&]
  • PARI
    for(n=1, 120, fn=fibonacci(n); issquarefree(fn)&&omega(fn)==3&&print1(fn ","))

Formula

A000045 INTERSECT A007304.