A283678 Number of possible draws of 2n pairs of consecutive cards from a set of 4n + 1 cards, so that the card that initially occupies the central position is not selected.
Examples
For n = 1, you have 5 cards (A, B, C, D, E) and you can make 2 draws of pairs of consecutive cards (AB, DE) and (DE, AB) without select C.
Links
- Ignacio Larrosa Cañestro, El as de corazones.
Programs
-
Maple
ogf := sqrt(x) * BesselI(0, sqrt(x)/4) * BesselK(0,sqrt(x)/4) / 2; simplify(subs(x=1/x, asympt(ogf, x, 20))); # Mark van Hoeij, Oct 24 2017
-
Mathematica
Table[Binomial[2n, n] Product[2n + 1 - 2i, {i, 1, n}]^2, {n, 0, 15}] (* Indranil Ghosh, Mar 22 2017 *)
-
PARI
a(n)=binomial(2*n, n)*prod(i=1,n,2*n+1-2*i)^2 \\ Charles R Greathouse IV, Mar 14 2017
-
Python
from sympy import binomial, factorial2 print([binomial(2*n, n) * factorial2(2*n - 1)**2 for n in range(15)]) # Indranil Ghosh, Mar 22 2017
Comments