cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A233427 Number A(n,k) of tilings of a k X n rectangle using pentominoes of any shape; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 5, 0, 0, 5, 0, 1, 1, 0, 0, 56, 0, 56, 0, 0, 1, 1, 0, 0, 0, 501, 501, 0, 0, 0, 1, 1, 0, 0, 0, 0, 4006, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 27950, 27950, 0, 0, 0, 1, 1, 1, 0, 45, 0, 0, 214689, 0, 214689, 0, 0, 45, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 09 2013

Keywords

Examples

			A(5,2) = A(2,5) = 5:
  ._________. ._________. ._________. ._________. ._________.
  |_________| | ._____| | | |_____. | |   ._|   | |   |_.   |
  |_________| |_|_______| |_______|_| |___|_____| |_____|___|.
Square array A(n,k) begins:
  1, 1,  1,    1,      1,         1,          1, ...
  1, 0,  0,    0,      0,         1,          0, ...
  1, 0,  0,    0,      0,         5,          0, ...
  1, 0,  0,    0,      0,        56,          0, ...
  1, 0,  0,    0,      0,       501,          0, ...
  1, 1,  5,   56,    501,      4006,      27950, ...
  1, 0,  0,    0,      0,     27950,          0, ...
  1, 0,  0,    0,      0,    214689,          0, ...
  1, 0,  0,    0,      0,   1696781,          0, ...
  1, 0,  0,    0,      0,  13205354,          0, ...
  1, 1, 45, 7670, 890989, 101698212, 7845888732, ...
  ...
		

Crossrefs

Formula

A(n,k) = 0 <=> n*k mod 5 > 0.

A350923 a(0) = 2, a(1) = 2, and a(n) = 10*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

2, 2, 14, 134, 1322, 13082, 129494, 1281854, 12689042, 125608562, 1243396574, 12308357174, 121840175162, 1206093394442, 11939093769254, 118184844298094, 1169909349211682, 11580908647818722, 114639177128975534, 1134810862641936614, 11233469449290390602, 111199883630261969402
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
Essentially the same as A157085. - R. J. Mathar, Feb 07 2022

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350924, A350925, A350926.

Programs

  • Mathematica
    LinearRecurrence[{11, -11, 1}, {2, 2, 14}, 25] (* Paolo Xausa, May 30 2025 *)

Formula

G.f.: 2*(1 - 10*x + 7*x^2)/((1 - x)*(1 - 10*x + x^2)). - Stefano Spezia, Jan 22 2022
From Hugo Pfoertner, Jan 22 2022: (Start)
a(n) = A031138(n) + 1.
a(n) = 3*A054318(n) - 1.
a(n) = 12*A097784(n-2) + 2 for n >= 2. (End)
a(n) = 2 * A253175(n) for n>=1. - Alois P. Heinz, Jan 22 2022

A211955 Triangle of coefficients of a polynomial sequence related to the Morgan-Voyce polynomials A085478.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 4, 1, 10, 30, 28, 8, 1, 15, 70, 112, 72, 16, 1, 21, 140, 336, 360, 176, 32, 1, 28, 252, 840, 1320, 1056, 416, 64, 1, 36, 420, 1848, 3960, 4576, 2912, 960, 128, 1, 45, 660, 3696, 10296, 16016, 14560, 7680, 2176, 256
Offset: 0

Views

Author

Peter Bala, Apr 30 2012

Keywords

Comments

Let b(n,x) = Sum_{k = 0..n} binomial(n+k,2*k)*x^k denote the Morgan-Voyce polynomials of A085478. This triangle lists the coefficients (in ascending powers of x) of the related polynomial sequence R(n,x) := (1/2)*b(n,2*x) + 1/2. Several sequences already in the database are of the form (R(n,x))n>=0 for a fixed value of x. These include A101265 (x = 1), A011900 (x = 2), A182432 (x = 3), A054318 (x = 4) as well as signed versions of A133872 (x = -1), A109613(x = -2), A146983 (x = -3) and A084159 (x = -4).
The polynomials R(n,x) factorize in the ring Z[x] as R(n,x) = P(n,x)*P(n+1,x) for n >= 1: explicitly, P(2*n,x) = 1/2*(b(2*n,2*x) + 1)/b(n,2*x) and P(2*n+1,x) = b(n,2*x). The coefficients of P(n,x) occur in several tables in the database, although without the connection to the Morgan-Voyce polynomials being noted - see A211956 for more details. In terms of T(n,x), the Chebyshev polynomials of the first kind, we have P(2*n,x) = T(2*n,u) and P(2*n+1,x) = 1/u * T(2*n+1,u), where u = sqrt((x+2)/2). Hence R(n,x) = 1/u * T(n,u) * T(n+1,u).

Examples

			Triangle begins
.n\k.|..0....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = = = =
..0..|..1
..1..|..1....1
..2..|..1....3....2
..3..|..1....6...10....4
..4..|..1...10...30...28....8
..5..|..1...15...70..112...72...16
..6..|..1...21..140..336..360..176...32
		

Crossrefs

Formula

T(n,0) = 1; T(n,k) = 2^(k-1)*binomial(n+k,2*k) for k > 0.
O.g.f. for column k (except column 0): 2^(k-1)*x^k/(1-x)^(2*k+1).
O.g.f.: (1-t*(x+2)+t^2)/((1-t)*(1-2*t(x+1)+t^2)) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2 + ....
Removing the first column from the triangle produces the Riordan array (x/(1-x)^3, 2*x/(1-x)^2).
The row polynomials R(n,x) := 1/2*b(n,2*x) + 1/2 = 1 + x*Sum_{k = 1..n} binomial(n+k,2*k)*(2*x)^(k-1).
Recurrence equation: R(n,x) = 2*(1+x)*R(n-1,x) - R(n-2,x) - x with initial conditions R(0,x) = 1, R(1,x) = 1+x.
Another recurrence is R(n,x)*R(n-2,x) = R(n-1,x)*(R(n-1,x) + x).
With P(n,x) as defined in the Comments section we have (x+2)/x - {Sum_{k = 0..2n} 1/R(k,x)}^2 = 2/(x*P(2*n+1,x)^2); (x+2)/x - {Sum_{k = 0..2n+1} 1/R(k,x)}^2 = (x+2)/(x*P(2*n+2,x)^2); consequently Sum_{k >= 0} 1/R(k,x) = sqrt((x+2)/x) for either x > 0 or x <= -2.
Row sums R(n,1) = A101265(n+1); Alt. row sums R(n,-1) = A133872(n+1);
R(n,2) = A011900(n); R(n,-2) = (-1)^n * A109613(n); R(n,3) = A182432;
R(n,-3) = (-1)^n * A146983(n); R(n,4) = A054318(n+1); R(n,-4) = (-1)^n * A084159(n).

A182432 Recurrence a(n)*a(n-2) = a(n-1)*(a(n-1) + 3) with a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 28, 217, 1705, 13420, 105652, 831793, 6548689, 51557716, 405913036, 3195746569, 25160059513, 198084729532, 1559517776740, 12278057484385, 96664942098337, 761041479302308, 5991666892320124, 47172293659258681, 371386682381749321
Offset: 0

Views

Author

Peter Bala, Apr 30 2012

Keywords

Comments

The non-linear recurrence equation a(n)*a(n-2) = a(n-1)*(a(n-1) + r) with initial conditions a(0) = 1, a(1) = 1 + r has the solution a(n) = 1/2 + (1/2)*Sum_{k = 0..n} (2*r)^k*binomial(n+k,2*k) = 1/2 + b(n,2*r)/2, where b(n,x) are the Morgan-Voyce polynomials of A085478. The recurrence produces sequences A101265 (r = 1), A011900 (r = 2) and A054318 (r = 4), as well as signed versions of A133872 (r = -1), A109613 (r = -2), A146983 (r = -3) and A084159(r = -4).
Also the indices of centered pentagonal numbers (A005891) which are also centered triangular numbers (A005448). - Colin Barker, Jan 01 2015
Also positive integers y in the solutions to 3*x^2 - 5*y^2 - 3*x + 5*y = 0. - Colin Barker, Jan 01 2015

Crossrefs

Programs

  • Magma
    I:=[1, 4, 28]; [n le 3 select I[n] else 9*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..25]]; // Vincenzo Librandi, May 18 2012
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==4,a[n]==(a[-1+n] (3+a[-1+n]))/a [-2+n]}, a[n],{n,30}] (* or *) LinearRecurrence[{9,-9,1},{1,4,28},30] (* Harvey P. Dale, May 14 2012 *)
  • PARI
    Vec((1-5*x+x^2)/((1-x)*(1-8*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 01 2015

Formula

a(n) = 1/2 + (1/2)*Sum_{k = 0..n} 6^k*binomial(n+k,2*k).
a(n) = R(n,3) where R(n,x) denotes the row polynomials of A211955.
a(n) = (1/u)*T(n,u)*T(n+1,u) with u = sqrt(5/2) and T(n,x) the n-th Chebyshev polynomial of the first kind.
Recurrence equation: a(n) = 8*a(n-1) - a(n-2) - 3 with a(0) = 1 and a(1) = 4.
O.g.f.: (1 - 5*x + x^2)/((1 - x)*(1 - 8*x + x^2)) = 1 + 4*x + 28*x^2 + ....
Sum_{n >= 0} 1/a(n) = sqrt(5/3); 5 - 3*(Sum_{k = 0..2*n} 1/a(k))^2 = 2/A070997(n)^2.
a(0) = 1, a(1) = 4, a(2) = 28, a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3). - Harvey P. Dale, May 14 2012

A253475 Indices of centered square numbers (A001844) which are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 6, 55, 540, 5341, 52866, 523315, 5180280, 51279481, 507614526, 5024865775, 49741043220, 492385566421, 4874114620986, 48248760643435, 477613491813360, 4727886157490161, 46801248083088246, 463284594673392295, 4586044698650834700, 45397162391834954701
Offset: 1

Views

Author

Colin Barker, Jan 02 2015

Keywords

Comments

Also positive integers x in the solutions to 4*x^2 - 6*y^2 - 4*x + 6*y = 0, the corresponding values of y being A054318.
Also indices of centered hexagonal numbers (A003215) which are also hexagonal numbers (A000384).
Also indices of terms in sequence A193218 which are the square root of a sum of 5th powers (A000539). - Daniel Poveda Parrilla, Jun 10 2017

Examples

			6 is in the sequence because the 6th centered square number is 61, which is also the 5th centered hexagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11, -11, 1}, {1, 6, 55}, 25] (* Paolo Xausa, May 30 2025 *)
  • PARI
    Vec(x*(5*x-1)/((x-1)*(x^2-10*x+1)) + O(x^100))

Formula

a(n) = 11*a(n-1)-11*a(n-2)+a(n-3).
G.f.: x*(5*x-1) / ((x-1)*(x^2-10*x+1)).
a(n) = sqrt((-2-(5-2*sqrt(6))^n-(5+2*sqrt(6))^n)*(2-(5-2*sqrt(6))^(1+n)-(5+2*sqrt(6))^(1+n)))/(4*sqrt(2)). - Gerry Martens, Jun 04 2015
2*a(n) = 1+A054320(n-1). - R. J. Mathar, Feb 07 2022

A087125 Indices k of hex numbers H(k) that are also triangular.

Original entry on oeis.org

0, 5, 54, 539, 5340, 52865, 523314, 5180279, 51279480, 507614525, 5024865774, 49741043219, 492385566420, 4874114620985, 48248760643434, 477613491813359, 4727886157490160, 46801248083088245, 463284594673392294, 4586044698650834699, 45397162391834954700
Offset: 0

Views

Author

Eric W. Weisstein, Aug 14 2003

Keywords

Comments

From the law of cosines, the non-Pythagorean triple {a(n), a(n)+1=A253475(n+1), A072256(n+1)} forms a near-isosceles triangle with the angle bounded by the consecutive sides equal to the regular tetrahedron's central angle (see A156546 and A247412). This implies also that a(n) are those numbers k such that (16/3)*A000217(k)+1 is a perfect square. - Federico Provvedi, Apr 04 2023

Crossrefs

Programs

  • Magma
    [Round((-4-(5-2*Sqrt(6))^n*(-2+Sqrt(6)) + (2+Sqrt(6))*(5 + 2*Sqrt(6))^n)/8): n in [0..25]]; // G. C. Greubel, Nov 04 2017
  • Mathematica
    CoefficientList[Series[(-x^2+5*x)/((1-x)*(1-10*x+x^2)), {x, 0, 25}], x] (* G. C. Greubel, Nov 04 2017 *)
    LinearRecurrence[{11,-11,1},{0,5,54},30] (* Harvey P. Dale, Jun 14 2022 *)
    Table[(x Sqrt[z^(2 n + 1) + z^-(2 n + 1) - 2] - 4) / 8 //. {x -> Sqrt[2], y -> Sqrt[3], z -> (5 + 2 x y)}, {n, 0, 100}] // Round (* Federico Provvedi, Apr 16 2023 *)
  • PARI
    concat(0, Vec(x*(x-5)/((x-1)*(x^2-10*x+1)) + O(x^50))) \\ Colin Barker, Jun 23 2015
    

Formula

G.f.: (-x^2+5*x)/((1-x)*(1-10*x+x^2)).
a(n) = 11*a(n-1) - 11*a(n-2) + a(n-3) for n > 2. - Colin Barker, Jun 23 2015
a(n) = (-4 - (5-2*sqrt(6))^n*(-2 + sqrt(6)) + (2+sqrt(6))*(5+2*sqrt(6))^n)/8. - Colin Barker, Mar 05 2016
a(n) = 10*a(n-1) - a(n-2) + 4 for n > 1. - Charlie Marion, Feb 14 2023
a(n) = ((x^(n+1)+1)*(x^n-1))/(2*x^n*(x-1)), with x=5+2*sqrt(6). - Federico Provvedi, Apr 04 2023
a(n) = sqrt(3*A161680(A054318(n+1)) + 1/4) - 1/2 = floor(sqrt(3*A000217(A054318(n+1)-1) + 1/4)). - Federico Provvedi, Apr 16 2023
Showing 1-6 of 6 results.