cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A084159 Pell oblongs.

Original entry on oeis.org

1, 3, 21, 119, 697, 4059, 23661, 137903, 803761, 4684659, 27304197, 159140519, 927538921, 5406093003, 31509019101, 183648021599, 1070379110497, 6238626641379, 36361380737781, 211929657785303, 1235216565974041, 7199369738058939, 41961001862379597, 244566641436218639
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

Essentially the same as A046727.

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 60 at p. 123.

Crossrefs

Cf. A046727 (same sequence except for first term).

Programs

  • Magma
    [Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)+2*(-1)^n)/4): n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
    
  • Mathematica
    b[n_]:= Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]];
    Join[{1}, Table[b[n+1], {n,50}]*Table[b[n], {n,50}]] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *)
    LinearRecurrence[{5,5,-1},{1,3,21},30] (* Harvey P. Dale, Aug 04 2019 *)
  • SageMath
    [(lucas_number2(2*n+1, 2, -1) + 2*(-1)^n)/4 for n in range(31)] # G. C. Greubel, Oct 11 2022

Formula

a(n) = ((sqrt(2)+1)^(2*n+1) - (sqrt(2)-1)^(2*n+1) + 2*(-1)^n)/4.
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3). - Paul Curtz, May 17 2008
G.f.: (1-x)^2/((1+x)*(1-6*x+x^2)). - R. J. Mathar, Sep 17 2008
a(n) = A078057(n)*A001333(n). - R. J. Mathar, Jul 08 2009
a(n) = A001333(n)*A001333(n+1).
From Peter Bala, May 01 2012: (Start)
a(n) = (-1)^n*R(n,-4), where R(n,x) is the n-th row polynomial of A211955.
a(n) = (-1)^n*1/u*T(n,u)*T(n+1,u) with u = sqrt(-1) and T(n,x) the Chebyshev polynomial of the first kind.
a(n) = (-1)^n + 4*Sum_{k = 1..n} (-1)^(n-k)*8^(k-1)*binomial(n+k,2*k).
Recurrence equations: a(n) = 6*a(n-1) - a(n-2) + 4*(-1)^n, with a(0) = 1 and a(1) = 3; a(n)*a(n-2) = a(n-1)*(a(n-1)+4*(-1)^n).
Sum_{k >= 0} (-1)^k/a(k) = 1/sqrt(2).
1 - 2*(Sum_{k = 0..n} (-1)^k/a(k))^2 = (-1)^(n+1)/A090390(n+1). (End)
a(n) = (A001333(2*n+1) + (-1)^n)/2. - G. C. Greubel, Oct 11 2022
E.g.f.: exp(-x)*(1 + exp(4*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)))/2. - Stefano Spezia, Aug 03 2024

A302329 a(0)=1, a(1)=61; for n>1, a(n) = 62*a(n-1) - a(n-2).

Original entry on oeis.org

1, 61, 3781, 234361, 14526601, 900414901, 55811197261, 3459393815281, 214426605350161, 13290990137894701, 823826961944121301, 51063980650397625961, 3165142973362708688281, 196187800367837541047461, 12160478479832564836254301, 753753477949251182306719201
Offset: 0

Views

Author

Bruno Berselli, Apr 05 2018

Keywords

Comments

Centered hexagonal numbers (A003215) with index in A145607. Example: 35 is a member of A145607, therefore A003215(35) = 3781 is a term of this sequence.
Also, centered 10-gonal numbers (A062786) with index in A182432. Example: 28 is a member of A182432 and A062786(28) = 3781.
a(n) is a solution to the Pell equation (4*a(n))^2 - 15*b(n)^2 = 1. The corresponding b(n) are A258684(n). - Klaus Purath, Jul 19 2025

Crossrefs

Fourth row of the array A188646.
First bisection of A041449, A042859.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k: A000012 (k=1), A001570 (k=2), A077420 (k=3), this sequence (k=4), A302330 (k=5), A302331 (k=6), A302332 (k=7), A253880 (k=8).

Programs

  • Mathematica
    LinearRecurrence[{62, -1}, {1, 61}, 20]
  • PARI
    x='x+O('x^99); Vec((1-x)/(1-62*x+x^2)) \\ Altug Alkan, Apr 06 2018

Formula

G.f.: (1 - x)/(1 - 62*x + x^2).
a(n) = a(-1-n).
a(n) = cosh((2*n + 1)*arccosh(4))/4.
a(n) = ((4 + sqrt(15))^(2*n + 1) + 1/(4 + sqrt(15))^(2*n + 1))/8.
a(n) = (1/4)*T(2*n+1, 4), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 08 2022
E.g.f.: exp(31*x)*(4*cosh(8*sqrt(15)*x) + sqrt(15)*sinh(8*sqrt(15)*x))/4. - Stefano Spezia, Jul 25 2025

A211955 Triangle of coefficients of a polynomial sequence related to the Morgan-Voyce polynomials A085478.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 4, 1, 10, 30, 28, 8, 1, 15, 70, 112, 72, 16, 1, 21, 140, 336, 360, 176, 32, 1, 28, 252, 840, 1320, 1056, 416, 64, 1, 36, 420, 1848, 3960, 4576, 2912, 960, 128, 1, 45, 660, 3696, 10296, 16016, 14560, 7680, 2176, 256
Offset: 0

Views

Author

Peter Bala, Apr 30 2012

Keywords

Comments

Let b(n,x) = Sum_{k = 0..n} binomial(n+k,2*k)*x^k denote the Morgan-Voyce polynomials of A085478. This triangle lists the coefficients (in ascending powers of x) of the related polynomial sequence R(n,x) := (1/2)*b(n,2*x) + 1/2. Several sequences already in the database are of the form (R(n,x))n>=0 for a fixed value of x. These include A101265 (x = 1), A011900 (x = 2), A182432 (x = 3), A054318 (x = 4) as well as signed versions of A133872 (x = -1), A109613(x = -2), A146983 (x = -3) and A084159 (x = -4).
The polynomials R(n,x) factorize in the ring Z[x] as R(n,x) = P(n,x)*P(n+1,x) for n >= 1: explicitly, P(2*n,x) = 1/2*(b(2*n,2*x) + 1)/b(n,2*x) and P(2*n+1,x) = b(n,2*x). The coefficients of P(n,x) occur in several tables in the database, although without the connection to the Morgan-Voyce polynomials being noted - see A211956 for more details. In terms of T(n,x), the Chebyshev polynomials of the first kind, we have P(2*n,x) = T(2*n,u) and P(2*n+1,x) = 1/u * T(2*n+1,u), where u = sqrt((x+2)/2). Hence R(n,x) = 1/u * T(n,u) * T(n+1,u).

Examples

			Triangle begins
.n\k.|..0....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = = = =
..0..|..1
..1..|..1....1
..2..|..1....3....2
..3..|..1....6...10....4
..4..|..1...10...30...28....8
..5..|..1...15...70..112...72...16
..6..|..1...21..140..336..360..176...32
		

Crossrefs

Formula

T(n,0) = 1; T(n,k) = 2^(k-1)*binomial(n+k,2*k) for k > 0.
O.g.f. for column k (except column 0): 2^(k-1)*x^k/(1-x)^(2*k+1).
O.g.f.: (1-t*(x+2)+t^2)/((1-t)*(1-2*t(x+1)+t^2)) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2 + ....
Removing the first column from the triangle produces the Riordan array (x/(1-x)^3, 2*x/(1-x)^2).
The row polynomials R(n,x) := 1/2*b(n,2*x) + 1/2 = 1 + x*Sum_{k = 1..n} binomial(n+k,2*k)*(2*x)^(k-1).
Recurrence equation: R(n,x) = 2*(1+x)*R(n-1,x) - R(n-2,x) - x with initial conditions R(0,x) = 1, R(1,x) = 1+x.
Another recurrence is R(n,x)*R(n-2,x) = R(n-1,x)*(R(n-1,x) + x).
With P(n,x) as defined in the Comments section we have (x+2)/x - {Sum_{k = 0..2n} 1/R(k,x)}^2 = 2/(x*P(2*n+1,x)^2); (x+2)/x - {Sum_{k = 0..2n+1} 1/R(k,x)}^2 = (x+2)/(x*P(2*n+2,x)^2); consequently Sum_{k >= 0} 1/R(k,x) = sqrt((x+2)/x) for either x > 0 or x <= -2.
Row sums R(n,1) = A101265(n+1); Alt. row sums R(n,-1) = A133872(n+1);
R(n,2) = A011900(n); R(n,-2) = (-1)^n * A109613(n); R(n,3) = A182432;
R(n,-3) = (-1)^n * A146983(n); R(n,4) = A054318(n+1); R(n,-4) = (-1)^n * A084159(n).

A054318 a(n)-th star number (A003154) is a square.

Original entry on oeis.org

1, 5, 45, 441, 4361, 43165, 427285, 4229681, 41869521, 414465525, 4102785725, 40613391721, 402031131481, 3979697923085, 39394948099365, 389969783070561, 3860302882606241, 38213059042991845, 378270287547312205
Offset: 1

Views

Author

Keywords

Comments

A two-way infinite sequence which is palindromic.
Also indices of centered hexagonal numbers (A003215) which are also centered square numbers (A001844). - Colin Barker, Jan 02 2015
Also positive integers y in the solutions to 4*x^2 - 6*y^2 - 4*x + 6*y = 0. - Colin Barker, Jan 02 2015

Examples

			a(2) = 5 because the 5th Star number (A003154) 121=11^2 is the 2nd that is a square.
		

Crossrefs

A031138 is 3*a(n)-2. Cf. A003154, A006061, A182432, A211955.
Quintisection of column k=2 of A233427.

Programs

  • GAP
    a:=[1,5,45];; for n in [4..30] do a[n]:=11*a[n-1]-11*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jul 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)) )); // G. C. Greubel, Jul 23 2019
    
  • Mathematica
    CoefficientList[Series[x(1-6x+x^2)/((1-x)(1-10x+x^2)), {x,0,30}], x] (* Michael De Vlieger, Aug 11 2016 *)
    LinearRecurrence[{11,-11,1},{1,5,45},30] (* Harvey P. Dale, Nov 05 2016 *)
  • PARI
    a(n)=if(n<1,a(1-n),1/2+subst(poltchebi(n)+poltchebi(n-1),x,5)/12)
    
  • PARI
    Vec(x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)) + O(x^30)) \\ Colin Barker, Jan 02 2015
    
  • Sage
    (x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
    

Formula

a(n) = 11*(a(n-1) - a(n-2)) + a(n-3).
a(n) = 1/2 + (3 - sqrt(6))/12*(5 + 2*sqrt(6))^n + (3 + sqrt(6))/12*(5 - 2*sqrt(6))^n.
From Michael Somos, Mar 18 2003: (Start)
G.f.: x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)).
12*a(n)*a(n-1) + 4 = (a(n) + a(n-1) + 2)^2.
a(n) = a(1-n) = 10*a(n-1) - a(n-2) - 4.
a(n) = 12*a(n-1)^2/(a(n-1) + a(n-2)) - a(n-1).
a(n) = (a(n-1) + 4)*a(n-1)/a(n-2). (End)
From Peter Bala, May 01 2012: (Start)
a(n+1) = 1 + (1/2)*Sum_{k = 1..n} 8^k*binomial(n+k,2*k).
a(n+1) = R(n,4), where R(n,x) is the n-th row polynomial of A211955.
a(n+1) = (1/u)*T(n,u)*T(n+1,u) with u = sqrt(3) and T(n,x) the Chebyshev polynomial of the first kind.
Sum {k>=0} 1/a(k) = sqrt(3/2). (End)
A003154(a(n)) = A006061(n). - Zak Seidov, Oct 22 2012
a(n) = (4*a(n-1) + a(n-1)^2) / a(n-2), n >= 3. - Seiichi Manyama, Aug 11 2016
2*a(n) = 1+A072256(n). - R. J. Mathar, Feb 07 2022

Extensions

More terms from James Sellers, Mar 01 2000

A146983 a(n) = A002531(n)*A002531(n+1).

Original entry on oeis.org

1, 2, 10, 35, 133, 494, 1846, 6887, 25705, 95930, 358018, 1336139, 4986541, 18610022, 69453550, 259204175, 967363153, 3610248434, 13473630586, 50284273907, 187663465045, 700369586270, 2613814880038, 9754889933879, 36405744855481, 135868089488042
Offset: 0

Views

Author

Paul Barry, Nov 04 2008

Keywords

Comments

a(n+1) is the Hankel transform of A051960 aerated.

Crossrefs

Programs

  • GAP
    a:=[1,2,10];; for n in [4..30] do a[n]:=3*a[n-1]+3*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 09 2020
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x+x^2)/((1+x)*(1-4*x+x^2)) )); // G. C. Greubel, Jan 09 2020
    
  • Maple
    seq(coeff(series((1-x+x^2)/((1+x)*(1-4*x+x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 09 2020
  • Mathematica
    LinearRecurrence[{3,3,-1}, {1,2,10}, 30] (* G. C. Greubel, Jan 09 2020 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x+x^2)/((1+x)*(1-4*x+x^2))) \\ G. C. Greubel, Jan 09 2020
    
  • Sage
    def A146983_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x+x^2)/((1+x)*(1-4*x+x^2)) ).list()
    A146983_list(30) # G. C. Greubel, Jan 09 2020
    

Formula

From Peter Bala, May 01 2012: (Start)
a(n) = (-1)^n + 3*Sum_{k = 1..n} (-1)^(n-k)*6^(k-1)*binomial(n+k,2*k).
a(n) = (-1)^n*R(n,-3), where R(n,x) is the n-th row polynomial of A211955.
a(n) = (-1)^n*1/u*T(n,u)*T(n+1,u) with u = sqrt(-1/2) and T(n,x) denotes the Chebyshev polynomial of the first kind Cf. A182432.
Recurrence: a(n) = 4*a(n-1) -a(n-2) +3*(-1)^n, with a(0) = 1 and a(1) = 2; a(n)*a(n-2) = a(n-1)*(a(n-1)+3*(-1)^n).
Sum_{k>=0} (-1)^k/a(k) = 1/sqrt(3). (End)
From Colin Barker, Jul 29 2013: (Start)
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3).
G.f.: (1-x+x^2)/((1+x)*(1-4*x+x^2)). (End)

Extensions

More terms from Colin Barker, Jul 29 2013

A253470 Indices of centered triangular numbers (A005448) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 5, 36, 280, 2201, 17325, 136396, 1073840, 8454321, 66560725, 524031476, 4125691080, 32481497161, 255726286205, 2013328792476, 15850904053600, 124793903636321, 982500325036965, 7735208696659396, 60899169248238200, 479458145289246201, 3774765993065731405
Offset: 1

Views

Author

Colin Barker, Jan 01 2015

Keywords

Comments

Also indices of pentagonal numbers (A000326) which are also centered pentagonal numbers (A005891).
Also positive integers x in the solutions to 3*x^2 - 5*y^2 - 3*x + 5*y = 0, the corresponding values of y being A182432.

Examples

			5 is in the sequence because the 5th centered triangular number is 31, which is also the 4th centered pentagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(x*(4*x-1)/((x-1)*(x^2-8*x+1)) + O(x^100))

Formula

a(n) = 9*a(n-1)-9*a(n-2)+a(n-3).
G.f.: x*(4*x-1) / ((x-1)*(x^2-8*x+1)).
a(n) = (6-(4-sqrt(15))^n*(3+sqrt(15))+(-3+sqrt(15))*(4+sqrt(15))^n)/12. - Colin Barker, Mar 03 2016
Showing 1-6 of 6 results.