A157084 Consider all consecutive integer Pythagorean quintuples (X, X+1, X+2, Z-1, Z) ordered by increasing Z; sequence gives X values.
0, 10, 108, 1078, 10680, 105730, 1046628, 10360558, 102558960, 1015229050, 10049731548, 99482086438, 984771132840, 9748229241970, 96497521286868, 955226983626718, 9455772314980320
Offset: 0
Examples
a(2) = 108 since 108^2 + 109^2 + 110^2 = 133^2 + 134^2.
References
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Ron Knott, Pythagorean Triples and Online Calculators
- Index entries for linear recurrences with constant coefficients, signature (11, -11, 1).
Programs
-
Magma
[(1/2 + Sqrt(6)/4)*(5 + 2*Sqrt(6))^n - (Sqrt(6)/4 - 1/2)*(5 - 2*Sqrt(6))^n - 1: n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
Mathematica
CoefficientList[Series[2*x*(-5 + x)/((x - 1)*(x^2 - 10*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Nov 04 2017 *)
-
PARI
x='x+O('x^50); concat([0], Vec(2*(x - 5)/((x-1)*(x^2 - 10*x + 1)))) \\ G. C. Greubel, Nov 04 2017
Formula
For n > 1, a(n) = 10*a(n-1) - a(n-2) + 8.
For n > 0, a(n) = 5*a(n-1) + 4*A157085(n-1) + 2.
Lim_{n->inf} a(n+1)/a(n) = 2(1 + sqrt(3/2))^2 = 5 + 2*sqrt(6).
From R. J. Mathar, Mar 19 2009: (Start)
G.f.: 2*x*(x - 5)/((x-1)*(x^2 - 10*x + 1)).
a(n) = 11*a(n-1) - 11*a(n-2) + a(n-3).
From Sergei N. Gladkovskii, Jan 12 2012: (Start)
G.f.: 1/(x-1) + (x+1)/(x^2-10*x+1).
a(n) = (1/2 + sqrt(6)/4)*(5 + 2*sqrt(6))^n - (sqrt(6)/4 - 1/2)*(5 - 2*sqrt(6))^n - 1. (End)
Comments