A157096
Consider all consecutive integer Pythagorean 11-tuples (X, X+1, X+2, X+3, X+4, X+5, Z-4, Z-3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives X values.
Original entry on oeis.org
0, 55, 1260, 27715, 608520, 13359775, 293306580, 6439385035, 141373164240, 3103770228295, 68141571858300, 1496010810654355, 32844096262537560, 721074106965172015, 15830786256971246820, 347556223546402258075, 7630406131763878430880, 167521378675258923221335
Offset: 0
a(2)=55 since 55^2 + 56^2 + 57^2 + 58^2 + 59^2 + 60^2 = 61^2 + 62^2 + 63^2 + 64^2 + 65^2.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
-
I:=[0, 55, 1260]; [n le 3 select I[n] else 23*Self(n-1) - 23*Self(n-2) + Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jun 09 2012
-
CoefficientList[Series[5*x*(x-11)/((x-1)*(x^2-22*x+1)),{x,0,20}],x] (* Vincenzo Librandi, Jun 09 2012 *)
-
x='x+O('x^50); concat([0], Vec(5*x*(x-11)/((x-1)*(x^2-22*x+1)))) \\ G. C. Greubel, Nov 04 2017
A157088
Consider all consecutive integer Pythagorean septuples (X, X+1, X+2, X+3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives X values.
Original entry on oeis.org
0, 21, 312, 4365, 60816, 847077, 11798280, 164328861, 2288805792, 31878952245, 444016525656, 6184352406957, 86136917171760, 1199732487997701, 16710117914796072, 232741918319147325, 3241676738553266496, 45150732421426583637, 628868577161418904440, 8759009347838438078541
Offset: 0
a(2)=312 since 312^2 + 313^2 + 314^2 + 315^2 = 361^2 + 361^2 + 363^2.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
-
[Round((3^(n+1)*((1+Sqrt(4/3))^(2*n+1)+(1-Sqrt(4/3))^(2*n+1))-2*3)/4): n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
CoefficientList[Series[3*x*(-7 + x)/((x - 1)*(x^2 - 14*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Nov 04 2017 *)
-
my(x='x+O('x^50)); concat([0], Vec(3*x*(-7+x)/((x-1)*(x^2-14*x+1)))) \\ G. C. Greubel, Nov 04 2017
A157085
Consider all Consecutive Integer Pythagorean quintuples (X, X+1, X+2, Z-1, Z) ordered by increasing Z; sequence gives Z values.
Original entry on oeis.org
2, 14, 134, 1322, 13082, 129494, 1281854, 12689042, 125608562, 1243396574, 12308357174, 121840175162, 1206093394442, 11939093769254, 118184844298094, 1169909349211682, 11580908647818722, 114639177128975534, 1134810862641936614, 11233469449290390602, 111199883630261969402
Offset: 0
a(3) = 134 since 108^2 + 109^2 + 110^2 = 133^2 + 134^2.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
-
LinearRecurrence[{11, -11, 1}, {2, 14, 134}, 25] (* Paolo Xausa, May 29 2025 *)
-
for(y=0,oo,yy=(y+2)^2+(y+1)^2;for(x=sqrtint(yy\3),ceil(sqrt(yy/3)),x^2+(x-1)^2+(x-2)^2==yy&&print1(y+2,", "))) \\ For illustrative purpose. - M. F. Hasler, Oct 04 2014
A157092
Consider all consecutive integer Pythagorean 9-tuples (X, X+1, X+2, X+3, X+4, Z-3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives X values.
Original entry on oeis.org
0, 36, 680, 12236, 219600, 3940596, 70711160, 1268860316, 22768774560, 408569081796, 7331474697800, 131557975478636, 2360712083917680, 42361259535039636, 760141959546795800, 13640194012307284796, 244763350261984330560, 4392100110703410665316, 78813038642399407645160
Offset: 0
a(2)=680 since 680^2 + 681^2 + 682^2 + 683^2 + 684^2 = 761^2 + 762^2 + 763^2 + 764^2.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
-
[Round((4^(n+1)*((1+Sqrt(5/4))^(2*n+1) + (1-Sqrt(5/4))^(2*n+1)) - 2*4)/4): n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
RecurrenceTable[{a[0]==0,a[1]==36,a[n]==18a[n-1]-a[n-2]+32},a,{n,20}] (* or *) LinearRecurrence[{19,-19,1},{0,36,680},20] (* Harvey P. Dale, Oct 09 2012 *)
-
x='x+O('x^50); concat([0], Vec(4*x*(-9+x)/((x-1)*(x^2-18*x+1)))) \\ G. C. Greubel, Nov 04 2017
Showing 1-4 of 4 results.
Comments