A157096
Consider all consecutive integer Pythagorean 11-tuples (X, X+1, X+2, X+3, X+4, X+5, Z-4, Z-3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives X values.
Original entry on oeis.org
0, 55, 1260, 27715, 608520, 13359775, 293306580, 6439385035, 141373164240, 3103770228295, 68141571858300, 1496010810654355, 32844096262537560, 721074106965172015, 15830786256971246820, 347556223546402258075, 7630406131763878430880, 167521378675258923221335
Offset: 0
a(2)=55 since 55^2 + 56^2 + 57^2 + 58^2 + 59^2 + 60^2 = 61^2 + 62^2 + 63^2 + 64^2 + 65^2.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
-
I:=[0, 55, 1260]; [n le 3 select I[n] else 23*Self(n-1) - 23*Self(n-2) + Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jun 09 2012
-
CoefficientList[Series[5*x*(x-11)/((x-1)*(x^2-22*x+1)),{x,0,20}],x] (* Vincenzo Librandi, Jun 09 2012 *)
-
x='x+O('x^50); concat([0], Vec(5*x*(x-11)/((x-1)*(x^2-22*x+1)))) \\ G. C. Greubel, Nov 04 2017
A157088
Consider all consecutive integer Pythagorean septuples (X, X+1, X+2, X+3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives X values.
Original entry on oeis.org
0, 21, 312, 4365, 60816, 847077, 11798280, 164328861, 2288805792, 31878952245, 444016525656, 6184352406957, 86136917171760, 1199732487997701, 16710117914796072, 232741918319147325, 3241676738553266496, 45150732421426583637, 628868577161418904440, 8759009347838438078541
Offset: 0
a(2)=312 since 312^2 + 313^2 + 314^2 + 315^2 = 361^2 + 361^2 + 363^2.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
-
[Round((3^(n+1)*((1+Sqrt(4/3))^(2*n+1)+(1-Sqrt(4/3))^(2*n+1))-2*3)/4): n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
CoefficientList[Series[3*x*(-7 + x)/((x - 1)*(x^2 - 14*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Nov 04 2017 *)
-
my(x='x+O('x^50)); concat([0], Vec(3*x*(-7+x)/((x-1)*(x^2-14*x+1)))) \\ G. C. Greubel, Nov 04 2017
A157084
Consider all consecutive integer Pythagorean quintuples (X, X+1, X+2, Z-1, Z) ordered by increasing Z; sequence gives X values.
Original entry on oeis.org
0, 10, 108, 1078, 10680, 105730, 1046628, 10360558, 102558960, 1015229050, 10049731548, 99482086438, 984771132840, 9748229241970, 96497521286868, 955226983626718, 9455772314980320
Offset: 0
a(2) = 108 since 108^2 + 109^2 + 110^2 = 133^2 + 134^2.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
-
[(1/2 + Sqrt(6)/4)*(5 + 2*Sqrt(6))^n - (Sqrt(6)/4 - 1/2)*(5 - 2*Sqrt(6))^n - 1: n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
CoefficientList[Series[2*x*(-5 + x)/((x - 1)*(x^2 - 10*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Nov 04 2017 *)
-
x='x+O('x^50); concat([0], Vec(2*(x - 5)/((x-1)*(x^2 - 10*x + 1)))) \\ G. C. Greubel, Nov 04 2017
A157093
Consider all Consecutive Integer Pythagorean 9-tuples (X,X+1,X+2,X+3,X+4,Z-3,Z-2,Z-1,Z) ordered by increasing Z; sequence gives Z values.
Original entry on oeis.org
4, 44, 764, 13684, 245524, 4405724, 79057484, 1418628964, 25456263844, 456794120204, 8196837899804, 147086288076244, 2639356347472564, 47361327966429884, 849864547048265324, 15250200518902345924, 273653744793193961284, 4910517205758588957164, 88115655958861407267644
Offset: 0
a(2)=764 since 680^2 + 681^2 + 682^2 + 683^2 + 684^2 = 761^2 + 762^2 + 763^2 + 764^2.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
-
LinearRecurrence[{19, -19, 1}, {4, 44, 764}, 25] (* Paolo Xausa, May 29 2025 *)
A261995
The first of four consecutive positive integers the sum of the squares of which is equal to the sum of the squares of twenty-one consecutive positive integers.
Original entry on oeis.org
42, 123, 315, 1827, 4659, 13650, 34794, 201114, 512610, 1501539, 3827187, 22120875, 56382603, 165155802, 420955938, 2433095298, 6201573882, 18165636843, 46301326155, 267618362067, 682116744579, 1998054897090, 5092724921274, 29435586732234, 75026640329970
Offset: 1
42 is in the sequence because 42^2 + ... + 45^2 = 7574 = 8^2 + ... + 28^2.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,110,-110,0,0,-1,1).
A261996
The first of twenty-one consecutive positive integers the sum of the squares of which is equal to the sum of the squares of four consecutive positive integers.
Original entry on oeis.org
8, 44, 128, 788, 2024, 5948, 15176, 87764, 223712, 655316, 1670312, 9654332, 24607376, 72079892, 183720224, 1061889836, 2706588728, 7928133884, 20207555408, 116798228708, 297700153784, 872022648428, 2222647375736, 12846743269124, 32744310328592
Offset: 1
8 is in the sequence because 8^2 + ... + 28^2 = 7574 = 42^2 + ... + 45^2.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,110,-110,0,0,-1,1).
Showing 1-6 of 6 results.
Comments