A212336
Expansion of 1/(1 - 23*x + 23*x^2 - x^3).
Original entry on oeis.org
1, 23, 506, 11110, 243915, 5355021, 117566548, 2581109036, 56666832245, 1244089200355, 27313295575566, 599648413462098, 13164951800590591, 289029291199530905, 6345479454589089320, 139311518709760434136, 3058507932160140461673
Offset: 0
Sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3):
A334673 (k=24),
A212336 (k=23),
A212335 (k=22),
A097833 (k=21),
A097832 (k=20),
A049664 (k=19),
A097831-
A097829 (k=18,17,16),
A076139 (k=15),
A097828-
A097826 (k=14,13,12),
A097784 (k=11),
A092420 (k=10),
A076765 (k=9),
A092521 (k=8),
A053142 (k=7),
A089817(k=6),
A061278 (k=5),
A027941 (k=4),
A000217 (k=3),
A021823 (k=2),
A133872 (k=1),
A079978 (k=0).
-
m:=17; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-23*x+23*x^2-x^3)));
-
I:=[1,23,506]; [n le 3 select I[n] else 23*Self(n-1)-23*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Aug 18 2013
-
a:= n-> (<<0|1|0>, <0|0|1>, <1|-23|23>>^n. <<1, 23, 506>>)[1, 1]:
seq(a(n), n=0..20); # Alois P. Heinz, Jun 15 2012
-
CoefficientList[Series[1/(1 - 23 x + 23 x^2 - x^3), {x, 0, 16}], x]
LinearRecurrence[{23, -23, 1}, {1, 23, 506}, 20] (* Vincenzo Librandi, Aug 18 2013 *)
-
makelist(coeff(taylor(1/(1-23*x+23*x^2-x^3), x, 0, n), x, n), n, 0, 16);
-
Vec(1/(1-23*x+23*x^2-x^3)+O(x^17))
-
[(1/20)*(-1 +21*chebyshev_U(n, 11) -chebyshev_U(n-1, 11)) for n in (0..30)] # G. C. Greubel, Feb 07 2022
A157088
Consider all consecutive integer Pythagorean septuples (X, X+1, X+2, X+3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives X values.
Original entry on oeis.org
0, 21, 312, 4365, 60816, 847077, 11798280, 164328861, 2288805792, 31878952245, 444016525656, 6184352406957, 86136917171760, 1199732487997701, 16710117914796072, 232741918319147325, 3241676738553266496, 45150732421426583637, 628868577161418904440, 8759009347838438078541
Offset: 0
a(2)=312 since 312^2 + 313^2 + 314^2 + 315^2 = 361^2 + 361^2 + 363^2.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
-
[Round((3^(n+1)*((1+Sqrt(4/3))^(2*n+1)+(1-Sqrt(4/3))^(2*n+1))-2*3)/4): n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
CoefficientList[Series[3*x*(-7 + x)/((x - 1)*(x^2 - 14*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Nov 04 2017 *)
-
my(x='x+O('x^50)); concat([0], Vec(3*x*(-7+x)/((x-1)*(x^2-14*x+1)))) \\ G. C. Greubel, Nov 04 2017
A157092
Consider all consecutive integer Pythagorean 9-tuples (X, X+1, X+2, X+3, X+4, Z-3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives X values.
Original entry on oeis.org
0, 36, 680, 12236, 219600, 3940596, 70711160, 1268860316, 22768774560, 408569081796, 7331474697800, 131557975478636, 2360712083917680, 42361259535039636, 760141959546795800, 13640194012307284796, 244763350261984330560, 4392100110703410665316, 78813038642399407645160
Offset: 0
a(2)=680 since 680^2 + 681^2 + 682^2 + 683^2 + 684^2 = 761^2 + 762^2 + 763^2 + 764^2.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
-
[Round((4^(n+1)*((1+Sqrt(5/4))^(2*n+1) + (1-Sqrt(5/4))^(2*n+1)) - 2*4)/4): n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
RecurrenceTable[{a[0]==0,a[1]==36,a[n]==18a[n-1]-a[n-2]+32},a,{n,20}] (* or *) LinearRecurrence[{19,-19,1},{0,36,680},20] (* Harvey P. Dale, Oct 09 2012 *)
-
x='x+O('x^50); concat([0], Vec(4*x*(-9+x)/((x-1)*(x^2-18*x+1)))) \\ G. C. Greubel, Nov 04 2017
A157084
Consider all consecutive integer Pythagorean quintuples (X, X+1, X+2, Z-1, Z) ordered by increasing Z; sequence gives X values.
Original entry on oeis.org
0, 10, 108, 1078, 10680, 105730, 1046628, 10360558, 102558960, 1015229050, 10049731548, 99482086438, 984771132840, 9748229241970, 96497521286868, 955226983626718, 9455772314980320
Offset: 0
a(2) = 108 since 108^2 + 109^2 + 110^2 = 133^2 + 134^2.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
-
[(1/2 + Sqrt(6)/4)*(5 + 2*Sqrt(6))^n - (Sqrt(6)/4 - 1/2)*(5 - 2*Sqrt(6))^n - 1: n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
CoefficientList[Series[2*x*(-5 + x)/((x - 1)*(x^2 - 10*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Nov 04 2017 *)
-
x='x+O('x^50); concat([0], Vec(2*(x - 5)/((x-1)*(x^2 - 10*x + 1)))) \\ G. C. Greubel, Nov 04 2017
A157097
Consider all Consecutive Integer Pythagorean 11-tuples (X, X+1, X+2, X+3, X+4, X+5, Z-4, Z-3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives Z values.
Original entry on oeis.org
5, 65, 1385, 30365, 666605, 14634905, 321301265, 7053992885, 154866542165, 3400009934705, 74645352021305, 1638797734533965, 35978904807725885, 789897108035435465, 17341757471971854305, 380728767275345359205, 8358691122585626048165, 183510475929608427700385, 4028871779328799783360265
Offset: 0
a(2)=65 since 55^2 + 56^2 + 57^2 + 58^2 + 59^2 + 60^2 = 61^2 + 62^2 + 63^2 + 64^2 + 65^2.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
-
LinearRecurrence[{23, -23, 1}, {5, 65, 1385}, 25] (* Paolo Xausa, May 29 2025 *)
A262017
The first of five consecutive positive integers the sum of the squares of which is equal to the sum of the squares of six consecutive positive integers.
Original entry on oeis.org
61, 1381, 30361, 666601, 14634901, 321301261, 7053992881, 154866542161, 3400009934701, 74645352021301, 1638797734533961, 35978904807725881, 789897108035435461, 17341757471971854301, 380728767275345359201, 8358691122585626048161, 183510475929608427700381
Offset: 1
61 is in the sequence because 61^2 + ... + 65^2 = 19855 = 55^2 + ... + 60^2.
A262018
The first of five consecutive positive integers the sum of the squares of which is equal to the sum of the squares of eleven consecutive positive integers.
Original entry on oeis.org
28, 5308, 945148, 168231388, 29944242268, 5329906892668, 948693482652988, 168862110005339548, 30056506887467786908, 5349889363859260730428, 952250250260060942229628, 169495194656926988456143708, 30169192398682743884251350748, 5369946751770871484408284289788
Offset: 1
28 is in the sequence because 28^2 + ... + 32^2 = 4510 = 15^2 + ... + 25^2.
-
LinearRecurrence[{179,-179,1},{28,5308,945148},30] (* Harvey P. Dale, May 16 2019 *)
-
Vec(-4*x*(7*x^2+74*x+7)/((x-1)*(x^2-178*x+1)) + O(x^20))
A262019
The first of eleven consecutive positive integers the sum of the squares of which is equal to the sum of the squares of five consecutive positive integers.
Original entry on oeis.org
15, 3575, 637215, 113421575, 20188404015, 3593422493975, 639609015524415, 113846811340852775, 20264092809656270415, 3606894673307475281975, 642006987755920943922015, 114273636925880620542837575, 20340065365818994535681167215, 3620417361478855146730704927575
Offset: 1
15 is in the sequence because 15^2 + ... + 25^2 = 4510 = 28^2 + ... + 32^2.
Showing 1-8 of 8 results.
Comments