cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A212336 Expansion of 1/(1 - 23*x + 23*x^2 - x^3).

Original entry on oeis.org

1, 23, 506, 11110, 243915, 5355021, 117566548, 2581109036, 56666832245, 1244089200355, 27313295575566, 599648413462098, 13164951800590591, 289029291199530905, 6345479454589089320, 139311518709760434136, 3058507932160140461673
Offset: 0

Views

Author

Bruno Berselli, Jun 08 2012

Keywords

Comments

Partial sums of A077421.

Crossrefs

Sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3): A334673 (k=24), A212336 (k=23), A212335 (k=22), A097833 (k=21), A097832 (k=20), A049664 (k=19), A097831-A097829 (k=18,17,16), A076139 (k=15), A097828-A097826 (k=14,13,12), A097784 (k=11), A092420 (k=10), A076765 (k=9), A092521 (k=8), A053142 (k=7), A089817(k=6), A061278 (k=5), A027941 (k=4), A000217 (k=3), A021823 (k=2), A133872 (k=1), A079978 (k=0).

Programs

  • Magma
    m:=17; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-23*x+23*x^2-x^3)));
    
  • Magma
    I:=[1,23,506]; [n le 3 select I[n] else 23*Self(n-1)-23*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Aug 18 2013
    
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|-23|23>>^n. <<1, 23, 506>>)[1, 1]:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jun 15 2012
  • Mathematica
    CoefficientList[Series[1/(1 - 23 x + 23 x^2 - x^3), {x, 0, 16}], x]
    LinearRecurrence[{23, -23, 1}, {1, 23, 506}, 20] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist(coeff(taylor(1/(1-23*x+23*x^2-x^3), x, 0, n), x, n), n, 0, 16);
    
  • PARI
    Vec(1/(1-23*x+23*x^2-x^3)+O(x^17))
    
  • Sage
    [(1/20)*(-1 +21*chebyshev_U(n, 11) -chebyshev_U(n-1, 11)) for n in (0..30)] # G. C. Greubel, Feb 07 2022

Formula

G.f.: 1/((1-x)*(1 - 22*x + x^2)).
a(n) = (((6+sqrt(30))^(2*n+3) + (6-sqrt(30))^(2*n+3))/6^(n+1) - 12)/240.
a(n) = a(-n-3) = 23*a(n-1) - 23*a(n-2) + a(n-3).
a(n)*a(n+2) = a(n+1)*(a(n+1)-1).
a(n+1) - 11*a(n) = A133285(n+2).
11*a(n+1) - a(n) = (1/5)*A157096(n+2).
a(n) = (1/20)*(-1 + 21*ChebyshevU(n, 11) - ChebyshevU(n-1, 11)). - G. C. Greubel, Feb 07 2022

A157088 Consider all consecutive integer Pythagorean septuples (X, X+1, X+2, X+3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives X values.

Original entry on oeis.org

0, 21, 312, 4365, 60816, 847077, 11798280, 164328861, 2288805792, 31878952245, 444016525656, 6184352406957, 86136917171760, 1199732487997701, 16710117914796072, 232741918319147325, 3241676738553266496, 45150732421426583637, 628868577161418904440, 8759009347838438078541
Offset: 0

Views

Author

Charlie Marion, Mar 12 2009

Keywords

Comments

In general, the first terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0, first(1) = k*(2k+1) and, for n > 1, first(n) = (4k+2)*first(n-1) - first(n-2) + 2*k^2; e.g., if k=4, then first(2) = 680 = 18*36 - 0 + 32.
In general, the first and last terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0 and last(0)=k; for n > 0, let first(n) = (2k+1)*first(n-1) + 2k*last(n-1) + k and last(n) = (2k+2)*first(n-1) + (2k+1)*last(n-1) + 2k; e.g., if k=4 and n=2, first(2) = 680 = 9*36 + 8*44 + 4 and last(2) = 764 = 10*36 + 9*44 + 8.
In general, the first terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: first(n) = (k^(n+1)((1+sqrt((k+1)/k))^(2n+1) + (1-sqrt((k+1)/k))^(2n+1)) - 2*k)/4; e.g., if k=4 and n=2, then first(2) = 680 = (4^3((1+sqrt(5/4)^5 + (1-sqrt(5/4))^5)-2*4)/4.
In general, if u(n) is the numerator and e(n) is the denominator of the n-th continued fraction convergent to sqrt((k+1)/k), then the first terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: first(2n+1) = k*u(2n)*u(2n+1) and, for n > 0, first(2n) = (k+1)*e(2n-1)*e(2n); e.g., a(3) = 4365 = 3*15*97 and a(4) = 60816 = 4*84*181.
In general, if first(n) is the first term of the n-th consecutive integer Pythagorean 2k+1-tuple, then lim_{n->inf} first(n+1)/first(n) = k*(1+sqrt((k+1)/k))^2 = 2k + 1 + 2*sqrt(k^2+k).

Examples

			a(2)=312 since 312^2 + 313^2 + 314^2 + 315^2 = 361^2 + 361^2 + 363^2.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
  • W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.

Crossrefs

Programs

  • Magma
    [Round((3^(n+1)*((1+Sqrt(4/3))^(2*n+1)+(1-Sqrt(4/3))^(2*n+1))-2*3)/4): n in [0..50]]; // G. C. Greubel, Nov 04 2017
  • Mathematica
    CoefficientList[Series[3*x*(-7 + x)/((x - 1)*(x^2 - 14*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Nov 04 2017 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(3*x*(-7+x)/((x-1)*(x^2-14*x+1)))) \\ G. C. Greubel, Nov 04 2017
    

Formula

For n > 1, a(n) = 14*a(n-1) - a(n-2) + 18.
For n > 0, a(n) = 7*a(n-1) + 6*A157089(n-1) + 3.
Limit_{n->oo} a(n+1)/a(n) = 3*(1+sqrt(4/3))^2 = 7 + 2*sqrt(12).
a(n) = (3^(n+1)*((1+sqrt(4/3))^(2*n+1) + (1-sqrt(4/3))^(2*n+1)) - 2*3)/4.
From R. J. Mathar, Mar 19 2009: (Start)
G.f.: 3*x*(-7+x)/((x-1)*(x^2-14*x+1)).
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3) = 3*A001921(n). (End)

A157092 Consider all consecutive integer Pythagorean 9-tuples (X, X+1, X+2, X+3, X+4, Z-3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives X values.

Original entry on oeis.org

0, 36, 680, 12236, 219600, 3940596, 70711160, 1268860316, 22768774560, 408569081796, 7331474697800, 131557975478636, 2360712083917680, 42361259535039636, 760141959546795800, 13640194012307284796, 244763350261984330560, 4392100110703410665316, 78813038642399407645160
Offset: 0

Views

Author

Charlie Marion, Mar 12 2009

Keywords

Comments

In general, the first terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0, first(1) = k*(2k+1) and, for n > 1, first(n) = (4k+2)*first(n-1) - first(n-2) + 2*k^2; e.g., if k=5, then first(2) = 1260 = 22*55 - 0 + 50.
In general, the first and last terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0 and last(0)=k; for n > 0, let first(n) = (2k+1)*first(n-1) + 2k*last(n-1) + k and last(n) = (2k+2)*first(n-1) + (2k+1)*last(n-1) + 2k; e.g., if k=5 and n=2, then first(2) = 1260 = 11*55 + 10*65 + 5 and last(2) = 1385 = 12*55 + 11*65 + 10.
In general, the first terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: first(n) = (k^(n+1)((1+sqrt((k+1)/k))^(2n+1) + (1-sqrt((k+1)/k))^(2n+1)) - 2*k)/4; e.g., if k=5 and n=2, then first(2) = 1260 = (5^3((1+sqrt((6/5))^5 + (1-sqrt(6/5))^5) - 2*5)/4.
In general, if u(n) is the numerator and e(n) is the denominator of the n-th continued fraction convergent to sqrt((k+1)/k), then the first terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: first(2n+1) = k*u(2n)*u(2n+1) and, for n > 0, first(2n) = (k+1)*e(2n-1)*e(2n); e.g., a(1) = 36 = 4*1*9 and a(2) = 680 = 5*8*17.
In general, if first(n) is the first term of the n-th consecutive integer Pythagorean 2k+1-tuple, then lim_{n->inf} first(n+1)/first(n) = k*(1+sqrt((k+1)/k))^2 = 2k + 1 + 2*sqrt(k^2+k).

Examples

			a(2)=680 since 680^2 + 681^2 + 682^2 + 683^2 + 684^2 = 761^2 + 762^2 + 763^2 + 764^2.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
  • W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.

Crossrefs

Programs

  • Magma
    [Round((4^(n+1)*((1+Sqrt(5/4))^(2*n+1) + (1-Sqrt(5/4))^(2*n+1)) - 2*4)/4): n in [0..50]]; // G. C. Greubel, Nov 04 2017
  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==36,a[n]==18a[n-1]-a[n-2]+32},a,{n,20}] (* or *) LinearRecurrence[{19,-19,1},{0,36,680},20] (* Harvey P. Dale, Oct 09 2012 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(4*x*(-9+x)/((x-1)*(x^2-18*x+1)))) \\ G. C. Greubel, Nov 04 2017
    

Formula

For n > 1, a(n) = 18*a(n-1) - a(n-2) + 32.
For n > 0, a(n) = 9*a(n-1) + 8*A157093(n-1) + 4.
a(n) = (4^(n+1)((1+sqrt(5/4))^(2n+1) + (1-sqrt(5/4))^(2n+1)) - 2*4)/4.
Lim_{n->inf} a(n+1)/a(n) = 4*(1+sqrt(5/4))^2 = 9 + 2*sqrt(20).
From R. J. Mathar, Mar 19 2009: (Start)
G.f.: 4*x*(-9+x)/((x-1)*(x^2-18*x+1)).
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3).
a(n) = 4*A119032(n+1). (End)
For n > 0, 1/a(n) = Sum_{k>=1} F(3*k)/phi^(6*k*n + 3*k), where F(n) = A000045(n) and phi = A001622 = (sqrt(5)+1)/2. - Diego Rattaggi, Dec 28 2019
E.g.f.: (1/2)*((2 + sqrt(5))*exp((9+4*sqrt(5))*x) + (2 - sqrt(5))*exp((9-4*sqrt(5))*x) - 4*exp(x)). - Stefano Spezia, Dec 29 2019

Extensions

Terms a(15) onward added by G. C. Greubel, Nov 06 2017

A157084 Consider all consecutive integer Pythagorean quintuples (X, X+1, X+2, Z-1, Z) ordered by increasing Z; sequence gives X values.

Original entry on oeis.org

0, 10, 108, 1078, 10680, 105730, 1046628, 10360558, 102558960, 1015229050, 10049731548, 99482086438, 984771132840, 9748229241970, 96497521286868, 955226983626718, 9455772314980320
Offset: 0

Views

Author

Charlie Marion, Mar 12 2009

Keywords

Comments

In general, the first terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0, first(1) = k*(2k+1) and, for n > 1, first(n) = (4k+2)*first(n-1) - first(n-2) + 2*k^2; e.g., if k=3, then first(2) = 312 = 14*21 - 0 + 18.
In general, the first and last terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0 and last(0)=k; for n > 0, let first(n) = (2k+1)*first(n-1) + 2k*last(n-1) + k and last(n) = (2k+2)*first(n-1) + (2k+1)*last(n-1) + 2k; e.g., if k=3 and n=2, first(2) = 312 = 7*21 + 6*27 + 3 and last(2) = 363 = 8*21 + 7*27 + 6. a(n) = (2^(n+1)((1+sqrt(3/2))^(2n+1) + (1-sqrt(3/2))^(2n+1)) - 2*2)/4; e.g., 108 = (2^3((1+sqrt(3/2))^5 + (1-sqrt(3/2))^5) - 2*2)/4.
In general, the first terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: first(n) = (k^(n+1)((1+sqrt((k+1)/k))^(2n+1) + (1-sqrt((k+1)/k))^(2n+1)) - 2*k)/4; e.g., if k=3 and n=2, then first(2) = 312 = (3^3((1+sqrt((4/3))^(5) + (1-sqrt(4/3)^5) - 2*3)/4.
In general, if u(n) is the numerator and e(n) is the denominator of the n-th continued fraction convergent to sqrt((k+1)/k), then the first terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: first(2n+1) = k*u(2n)*u(2n+1) and, for n > 0, first(2n) = (k+1)*e(2n-1)*e(2n); e.g., a(3) = 1078 = 2*11*49 and a(4) = 10680 = 3*40*89.
In general, if first(n) is the first term of the n-th Consecutive Integer Pythagorean 2k+1-tuple, then lim n->inf first(n+1)/first(n) = k*(1 + sqrt((k+1)/k))^2 = 2k + 1 + 2*sqrt(k^2+k).

Examples

			a(2) = 108 since 108^2 + 109^2 + 110^2 = 133^2 + 134^2.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
  • W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.

Crossrefs

Programs

  • Magma
    [(1/2 + Sqrt(6)/4)*(5 + 2*Sqrt(6))^n - (Sqrt(6)/4 - 1/2)*(5 - 2*Sqrt(6))^n - 1: n in [0..50]]; // G. C. Greubel, Nov 04 2017
  • Mathematica
    CoefficientList[Series[2*x*(-5 + x)/((x - 1)*(x^2 - 10*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Nov 04 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(2*(x - 5)/((x-1)*(x^2 - 10*x + 1)))) \\ G. C. Greubel, Nov 04 2017
    

Formula

For n > 1, a(n) = 10*a(n-1) - a(n-2) + 8.
For n > 0, a(n) = 5*a(n-1) + 4*A157085(n-1) + 2.
Lim_{n->inf} a(n+1)/a(n) = 2(1 + sqrt(3/2))^2 = 5 + 2*sqrt(6).
From R. J. Mathar, Mar 19 2009: (Start)
G.f.: 2*x*(x - 5)/((x-1)*(x^2 - 10*x + 1)).
a(n) = 11*a(n-1) - 11*a(n-2) + a(n-3).
a(n) = 2*A087125(n) = A054320(n) - 1. (End)
From Sergei N. Gladkovskii, Jan 12 2012: (Start)
G.f.: 1/(x-1) + (x+1)/(x^2-10*x+1).
a(n) = (1/2 + sqrt(6)/4)*(5 + 2*sqrt(6))^n - (sqrt(6)/4 - 1/2)*(5 - 2*sqrt(6))^n - 1. (End)

A157097 Consider all Consecutive Integer Pythagorean 11-tuples (X, X+1, X+2, X+3, X+4, X+5, Z-4, Z-3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives Z values.

Original entry on oeis.org

5, 65, 1385, 30365, 666605, 14634905, 321301265, 7053992885, 154866542165, 3400009934705, 74645352021305, 1638797734533965, 35978904807725885, 789897108035435465, 17341757471971854305, 380728767275345359205, 8358691122585626048165, 183510475929608427700385, 4028871779328799783360265
Offset: 0

Views

Author

Charlie Marion, Mar 12 2009

Keywords

Comments

In general, the last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: let last(0)=0, last(1)=k*(2k+3) and, for n > 1, last(n) = (4k+2)*last(n-1) - last(n-2)-2*k*(k-1); e.g., if k=6, then last(2) = 2274 = 26*90 - 6 - 60.
In general, the first and last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0 and last(0)=k; for n > 0, let first(n) = (2k+1)*first(n-1) + 2k*last(n-1) + k and last(n) = (2k+2)*first(n-1) + (2k+1)*last(n-1) + 2k; e.g., if k=6 and n=2, then first(2) = 2100 = 13*78 + 12*90 + 6 and last(2) = 2274 = 14*78 + 13*90 + 12.
In general, the last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: if q=(k+1)/k, then last(n) = k^n*(k+1)*((1+sqrt(q))^(2*n+1) - (1-sqrt(q))^(2*n+1))/(4*sqrt(q)) + (k-1)/2; e.g., if k=6 and n=2, then last(2) = 2274 = 6^2*7*((1+sqrt(7/6))^5 - (1-sqrt(7/6))^5)/(4*sqrt(7/6)) + 5/2.
In general, if u(n) is the numerator and e(n) is the denominator of the n-th continued fraction convergent to sqrt((k+1)/k), then the last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: last(2n+1) = (e(2n+1)^2 + k^2*e(2n)^2 + k*(k-1)*e(2n+1)*e(n))/k and, for n > 0, last(2n) = (k*(u(2n)^2 + u(2n-1)^2 + (k-1)*u(2n)*u(2n-1)))/(k+1); e.g., a(3) = 30365 = (220^2 + 5^2*21^2 + 5*4*220*21)/5 and a(4) = 666605 = (5*(505^2 + 241^2 + 4*505*241))/6.
In general, if b(0)=1, b(1)=4k+2 and, for n > 1, b(n) = (4k+2)*b(n-1) - b(n-2), and last(n) is the last term of the n-th Consecutive Integer Pythagorean 2k+1-tuple as defined above, then Sum_{i=0..n} (k*last(i) - k(k-1)/2) = k(k+1)/2*b(n); e.g., if n=3, then 1+2+3+4+5+61+62+63+64+65+1381+1382+1383+1384+1385 = 7245 = 15*483.
In general, if last(n) is the last term of the n-th Consecutive Integer Pythagorean 2k+1-tuple, then lim_{n->infinity} last(n+1)/last(n) = k*(1+sqrt((k+1)/k))^2 = 2k + 1 + 2*sqrt(k^2+k).

Examples

			a(2)=65 since 55^2 + 56^2 + 57^2 + 58^2 + 59^2 + 60^2 = 61^2 + 62^2 + 63^2 + 64^2 + 65^2.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
  • W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{23, -23, 1}, {5, 65, 1385}, 25] (* Paolo Xausa, May 29 2025 *)

Formula

For n > 1, a(n) = 22*a(n-1) - a(n-2) - 40.
For n > 0, a(n) = 12*A157096(n-1) + 11*a(n-1) + 10.
a(n) = 5^n*6*((1+sqrt(6/5))^(2*n+1) - (1-sqrt(6/5))^(2*n+1))/(4*sqrt(6/5)) + 4/2; e.g., 1385 = 5^2*6*((1+sqrt(6/5))^5 - (1-sqrt(6/5))^5)/(4*sqrt(6/5)) + 4/2.
Limit_{n->oo} a(n+1)/a(n) = 5*(1+sqrt(6/5))^2 = 11 + 2*sqrt(30).
G.f.: 5*(1-10*x+x^2)/((1-x)*(1-22*x+x^2)). - Colin Barker, Mar 27 2012
a(n) = 23*a(n-1) - 23*a(n-2) + a(n-3). - Wesley Ivan Hurt, Oct 26 2020

Extensions

a(13), a(15) corrected by Georg Fischer, Oct 26 2020

A262017 The first of five consecutive positive integers the sum of the squares of which is equal to the sum of the squares of six consecutive positive integers.

Original entry on oeis.org

61, 1381, 30361, 666601, 14634901, 321301261, 7053992881, 154866542161, 3400009934701, 74645352021301, 1638797734533961, 35978904807725881, 789897108035435461, 17341757471971854301, 380728767275345359201, 8358691122585626048161, 183510475929608427700381
Offset: 1

Views

Author

Colin Barker, Sep 08 2015

Keywords

Comments

For the first of the corresponding six consecutive positive integers, see A157096.

Examples

			61 is in the sequence because 61^2 + ... + 65^2 = 19855 = 55^2 + ... + 60^2.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^2-22*x+61)/((x-1)*(x^2-22*x+1)) + O(x^40))

Formula

a(n) = 23*a(n-1)-23*a(n-2)+a(n-3) for n>3.
G.f.: -x*(x^2-22*x+61) / ((x-1)*(x^2-22*x+1)).

A262018 The first of five consecutive positive integers the sum of the squares of which is equal to the sum of the squares of eleven consecutive positive integers.

Original entry on oeis.org

28, 5308, 945148, 168231388, 29944242268, 5329906892668, 948693482652988, 168862110005339548, 30056506887467786908, 5349889363859260730428, 952250250260060942229628, 169495194656926988456143708, 30169192398682743884251350748, 5369946751770871484408284289788
Offset: 1

Views

Author

Colin Barker, Sep 08 2015

Keywords

Comments

For the first of the corresponding eleven consecutive positive integers, see A262019.

Examples

			28 is in the sequence because 28^2 + ... + 32^2 = 4510 = 15^2 + ... + 25^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{179,-179,1},{28,5308,945148},30] (* Harvey P. Dale, May 16 2019 *)
  • PARI
    Vec(-4*x*(7*x^2+74*x+7)/((x-1)*(x^2-178*x+1)) + O(x^20))

Formula

a(n) = 179*a(n-1)-179*a(n-2)+a(n-3) for n>3.
G.f.: -4*x*(7*x^2+74*x+7) / ((x-1)*(x^2-178*x+1)).

A262019 The first of eleven consecutive positive integers the sum of the squares of which is equal to the sum of the squares of five consecutive positive integers.

Original entry on oeis.org

15, 3575, 637215, 113421575, 20188404015, 3593422493975, 639609015524415, 113846811340852775, 20264092809656270415, 3606894673307475281975, 642006987755920943922015, 114273636925880620542837575, 20340065365818994535681167215, 3620417361478855146730704927575
Offset: 1

Views

Author

Colin Barker, Sep 08 2015

Keywords

Comments

For the first of the corresponding five consecutive positive integers, see A262018.

Examples

			15 is in the sequence because 15^2 + ... + 25^2 = 4510 = 28^2 + ... + 32^2.
		

Crossrefs

Programs

  • PARI
    Vec(5*x*(5*x^2-178*x-3)/((x-1)*(x^2-178*x+1)) + O(x^20))

Formula

a(n) = 179*a(n-1)-179*a(n-2)+a(n-3) for n>3.
G.f.: 5*x*(5*x^2-178*x-3) / ((x-1)*(x^2-178*x+1)).
Showing 1-8 of 8 results.