cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A350916 Positive integers k such that (k+1)^4 has a divisor congruent to -1 modulo k.

Original entry on oeis.org

1, 2, 3, 5, 9, 11, 14, 17, 29, 35, 41, 43, 59, 65, 69, 125, 134, 139, 174, 194, 339, 386, 449, 461, 681, 901, 937, 1169, 1322, 1325, 1715, 1971, 2211, 3054, 6395, 7989, 8857, 9077, 10849, 11483, 12545, 13082, 20909, 21506, 23861, 35233, 54734, 62210, 66923, 89045, 129494, 143289, 172899, 174725, 203321, 332315, 375129, 390051, 426389, 493697, 561513, 982094
Offset: 1

Views

Author

Max Alekseyev, Jan 21 2022

Keywords

Comments

For (k+1)^3 similar sequence is finite {1, 2, 3, 5, 9, 11, 14}, while for (k+1)^2 it is just {1, 2, 3, 5}. Starting with power 4 (this sequence), the number of values of k is infinite. One series of values for power 6 is given by A001570.
Formed by the union of 10 linear recurrent sequences satisfying b(n) = q*b(n-1) - b(n-2) - 4: A350919 (q=3), A350920 (q=4), A350921 (q=6), A350922 (q=7), A350923 (q=10), A103974 (q=14), A350924 (q=16), A350925 (q=16), A350926 (q=23), A350917 (q=23). Each of them give identities (b(n)+1)^4 = (b(n)*b(n-1)-1) * (b(n)*b(n+1)-1).
Only terms 1, 2, 5, 9, 11, 14, 29 are shared between two or more sequences, all others come from exactly one sequence.

Crossrefs

Programs

  • PARI
    { for(k=1,10^6, fordiv((k+1)^4,d, if(Mod(d,k)==-1, print1(k,", "); break)) ); }

A350922 a(0) = 2, a(1) = 5, and a(n) = 7*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

2, 5, 29, 194, 1325, 9077, 62210, 426389, 2922509, 20031170, 137295677, 941038565, 6449974274, 44208781349, 303011495165, 2076871684802, 14235090298445, 97568760404309, 668746232531714, 4583654867317685, 31416837838692077, 215334210003526850, 1475922632185995869
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
From William P. Orrick, Dec 20 2023: (Start)
Every term is a Markov number (see A002559) and, for n > 1, corresponds to a node of the Markov tree A368546 whose sibling and ancestors are all odd-indexed Fibonacci numbers. For n > 1, a(n) is the label of the node obtained from the root by going left n - 2 times and then right. Its Farey index, described in the comments to A368546, is 2 / (2*n - 1).
For instance, a(3) = 194 comes from going left once from the root node of the Markov tree and then right, which corresponds to the sequence of Markov numbers 5, 13, 194. The corresponding sequence of Farey indices is 1/2, 1/3, 2/5. The sibling of the final node corresponds to Markov number 34 and Farey index 1/4. (End)

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350923, A350924, A350925, A350926.

Programs

  • Mathematica
    CoefficientList[Series[(2 - x)*(1 - 5*x)/((1 - x)*(1 - 7*x + x^2)), {x, 0, 22}],x] (* James C. McMahon, Dec 22 2023 *)

Formula

G.f.: (2 - x)*(1 - 5*x)/((1 - x)*(1 - 7*x + x^2)). - Stefano Spezia, Jan 22 2022
a(n) = 3*A049684(n) + 2 = 3*A064170(n+2) - 1. - Hugo Pfoertner, Jan 22 2022
a(n) = 3*A000045(2*n - 1) * A000045(2*n + 1) - 1 = A000045(2*n - 1)^2 + A000045(2*n + 1)^2. - William P. Orrick, Jan 08 2023

A350917 a(0) = 1, a(1) = 2, and a(n) = 23*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

1, 2, 41, 937, 21506, 493697, 11333521, 260177282, 5972743961, 137112933817, 3147624733826, 72258255944177, 1658792261982241, 38079963769647362, 874180374439907081, 20068068648348215497, 460691398537569049346, 10575834097715739919457, 242783492848924449098161, 5573444501427546589338242, 127946440039984647105681401, 2937194676418219336841333977
Offset: 0

Views

Author

Max Alekseyev, Jan 21 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
Other properties for all n:
(a(n)+1)*(a(n+2)+1) = (a(n+1)+1)*(a(n+1)+26);
((105*a(n) - 20)^2 - 50^2) / 21 is an integer square.

Crossrefs

Cf. A350916.
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350919, A350920, A350921, A350922, A350923, A350924, A350925, A350926.

Formula

a(n) = 17/42*A090731(n) - 15/2*A097778(n-1) + 4/21.
G.f.: ( -1+22*x-17*x^2 ) / ( (x-1)*(x^2-23*x+1) ). - R. J. Mathar, Feb 07 2022

A350919 a(0) = 9, a(1) = 9, and a(n) = 3*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

9, 9, 14, 29, 69, 174, 449, 1169, 3054, 7989, 20909, 54734, 143289, 375129, 982094, 2571149, 6731349, 17622894, 46137329, 120789089, 316229934, 827900709, 2167472189, 5674515854, 14856075369, 38893710249, 101825055374, 266581455869, 697919312229, 1827176480814, 4783610130209, 12523653909809, 32787351599214, 85838400887829, 224727851064269
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350920, A350921, A350922, A350923, A350924, A350925, A350926.

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,3b-a-4}; NestList[nxt,{9,9},40][[;;,1]] (* or *) LinearRecurrence[{4,-4,1},{9,9,14},40] (* Harvey P. Dale, Jul 19 2024 *)

Formula

a(n) = 5*A032908(n) - 1. - Hugo Pfoertner, Jan 22 2022
G.f.: (3 - 2*x)*(3 - 7*x)/((1 - x)*(1 - 3*x + x^2)). - Stefano Spezia, Jan 22 2022
a(n) = 5*A001519(n) +4. - R. J. Mathar, Feb 07 2022

A350920 a(0) = 5, a(1) = 5, and a(n) = 4*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

5, 5, 11, 35, 125, 461, 1715, 6395, 23861, 89045, 332315, 1240211, 4628525, 17273885, 64467011, 240594155, 897909605, 3351044261, 12506267435, 46674025475, 174189834461, 650085312365, 2426151414995, 9054520347611, 33791929975445, 126113199554165, 470660868241211, 1756530273410675, 6555460225401485, 24465310628195261, 91305782287379555
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350921, A350922, A350923, A350924, A350925, A350926.

Formula

a(n) = 3*A001835(n) + 2. - Hugo Pfoertner, Jan 22 2022
G.f.: (5 - 20*x + 11*x^2)/((1 - x)*(1 - 4*x + x^2)). - Stefano Spezia, Jan 22 2022

A350921 a(0) = 3, a(1) = 3, and a(n) = 6*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

3, 3, 11, 59, 339, 1971, 11483, 66923, 390051, 2273379, 13250219, 77227931, 450117363, 2623476243, 15290740091, 89120964299, 519435045699, 3027489309891, 17645500813643, 102845515571963, 599427592618131, 3493720040136819, 20362892648202779, 118683635849079851, 691738922446276323
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350922, A350923, A350924, A350925, A350926.

Formula

G.f.: (3 - 18*x + 11*x^2)/((1 - x)*(1 - 6*x + x^2)). - Stefano Spezia, Jan 22 2022
a(n) = 2*A001653(n) + 1 = 4*A011900(n-1) - 1 for n >= 1. - Hugo Pfoertner, Jan 22 2022

A350924 a(0) = 1, a(1) = 3, and a(n) = 16*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

1, 3, 43, 681, 10849, 172899, 2755531, 43915593, 699893953, 11154387651, 177770308459, 2833170547689, 45152958454561, 719614164725283, 11468673677149963, 182779164669674121, 2912997961037635969, 46425188211932501379, 739890013429882386091, 11791815026666185676073
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Cf. A350916.
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350925, A350926.

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,16b-a-4}; NestList[nxt,{1,3},20][[All,1]] (* or *) LinearRecurrence[ {17,-17,1},{1,3,43},20] (* Harvey P. Dale, Jan 08 2023 *)
  • Python
    a350924 = [1, 3]
    for k in range(2, 100): a350924.append(16*a350924[k-1]-a350924[k-2]-4)
    print(a350924) # Karl-Heinz Hofmann, Jan 22 2022

Formula

G.f.: (1 - 14*x + 9*x^2)/((1 - x)*(1 - 16*x + x^2)). - Stefano Spezia, Jan 22 2022
7*a(n) = 2 +5*A077412(n) -61*A077412(n-1). - R. J. Mathar, Feb 07 2022

A350925 a(0) = 1, a(1) = 9, and a(n) = 16*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

1, 9, 139, 2211, 35233, 561513, 8948971, 142622019, 2273003329, 36225431241, 577333896523, 9201116913123, 146640536713441, 2337047470501929, 37246118991317419, 593600856390576771, 9460367583257910913, 150772280475735997833, 2402896120028518054411
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Cf. A350916.
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350924, A350926.

Programs

  • Mathematica
    LinearRecurrence[{17,-17,1},{1,9,139},20] (* Harvey P. Dale, Feb 09 2025 *)

Formula

G.f.: (1 - 8*x + 3*x^2)/((1 - x)*(1 - 16*x + x^2)). - Stefano Spezia, Jan 22 2022
7*a(n) = 2+5*A077412(n)-19*A077412(n-1). - R. J. Mathar, Feb 07 2022

A350926 a(0) = 1, a(1) = 17, and a(n) = 23*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

1, 17, 386, 8857, 203321, 4667522, 107149681, 2459775137, 56467678466, 1296296829577, 29758359401801, 683145969411842, 15682598937070561, 360016629583211057, 8264699881476783746, 189728080644382815097, 4355481154939327963481, 99986338482960160344962, 2295330303953144359970641
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Cf. A350916.
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350925, A350925.

Programs

  • Mathematica
    LinearRecurrence[{24,-24,1},{1,17,386},20] (* Harvey P. Dale, Jun 12 2022 *)

Formula

G.f.: (1 - 7*x + 2*x^2)/((1 - x)*(1 - 23*x + x^2)). - Stefano Spezia, Jan 22 2022
21*a(n) = 4+17*A097778(n)-38*A097778(n-1). - R. J. Mathar, Feb 07 2022

A253175 Indices of hexagonal numbers (A000384) which are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 7, 67, 661, 6541, 64747, 640927, 6344521, 62804281, 621698287, 6154178587, 60920087581, 603046697221, 5969546884627, 59092422149047, 584954674605841, 5790454323909361, 57319588564487767, 567405431320968307, 5616734724645195301, 55599941815130984701
Offset: 1

Views

Author

Colin Barker, Jan 08 2015

Keywords

Comments

Also positive integers x in the solutions to 4*x^2-6*y^2-2*x+6*y-2 = 0, the corresponding values of y being A253475.

Examples

			7 is in the sequence because the 7th hexagonal number is 91, which is also the 6th centered hexagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11, -11, 1}, {1, 7, 67}, 25] (* Paolo Xausa, May 30 2025 *)
  • PARI
    Vec(-x*(x^2-4*x+1)/((x-1)*(x^2-10*x+1)) + O(x^100))

Formula

a(n) = 11*a(n-1)-11*a(n-2)+a(n-3).
G.f.: -x*(x^2-4*x+1) / ((x-1)*(x^2-10*x+1)).
a(n) = (2+(5-2*sqrt(6))^n*(3+sqrt(6))-(-3+sqrt(6))*(5+2*sqrt(6))^n)/8. - Colin Barker, Mar 05 2016
4*a(n) = 1+3*A072256(n). - R. J. Mathar, Feb 07 2022
a(n) = A350923(n)/2. - Paolo Xausa, May 30 2025
Showing 1-10 of 10 results.