cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A350923 a(0) = 2, a(1) = 2, and a(n) = 10*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

2, 2, 14, 134, 1322, 13082, 129494, 1281854, 12689042, 125608562, 1243396574, 12308357174, 121840175162, 1206093394442, 11939093769254, 118184844298094, 1169909349211682, 11580908647818722, 114639177128975534, 1134810862641936614, 11233469449290390602, 111199883630261969402
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
Essentially the same as A157085. - R. J. Mathar, Feb 07 2022

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350924, A350925, A350926.

Programs

  • Mathematica
    LinearRecurrence[{11, -11, 1}, {2, 2, 14}, 25] (* Paolo Xausa, May 30 2025 *)

Formula

G.f.: 2*(1 - 10*x + 7*x^2)/((1 - x)*(1 - 10*x + x^2)). - Stefano Spezia, Jan 22 2022
From Hugo Pfoertner, Jan 22 2022: (Start)
a(n) = A031138(n) + 1.
a(n) = 3*A054318(n) - 1.
a(n) = 12*A097784(n-2) + 2 for n >= 2. (End)
a(n) = 2 * A253175(n) for n>=1. - Alois P. Heinz, Jan 22 2022

A157085 Consider all Consecutive Integer Pythagorean quintuples (X, X+1, X+2, Z-1, Z) ordered by increasing Z; sequence gives Z values.

Original entry on oeis.org

2, 14, 134, 1322, 13082, 129494, 1281854, 12689042, 125608562, 1243396574, 12308357174, 121840175162, 1206093394442, 11939093769254, 118184844298094, 1169909349211682, 11580908647818722, 114639177128975534, 1134810862641936614, 11233469449290390602, 111199883630261969402
Offset: 0

Views

Author

Charlie Marion, Mar 12 2009

Keywords

Comments

"Consecutive Integer Pythagorean quintuple" means that X^2 + (X+1)^2 + (X+2)^2 = (Z-1)^2 + Z^2. - M. F. Hasler, Oct 04 2014
The last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: let last(0)=0, last(1)=k*(2k+3) and, for n > 1, last(n) = (4k+2)*last(n-1) - last(n-2) - 2*k*(k-1); e.g., if k=3, then last(2) = 363 = 14*27 - 3 - 12.
For n > 0, a(n) = 6*a(n-1) + 5*A157084(n-1) + 4; e.g., 1322 = 6*108 + 5*134 + 4.
The first and last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0 and last(0)=k; for n > 0, let first(n) = (2k+1)*first(n-1) + 2k*last(n-1) + k and last(n) = (2k+2)*first(n-1) + (2k+1)*last(n-1) + 2k; e.g., if k=3 and n=2, then first(2) = 312 = 7*21 + 6*27+3 and last(2) = 363 = 8*21 + 7*27 + 6.
a(n) = 2^n*3*((1+sqrt(3/2))^(2*n+1) - (1-sqrt(3/2))^(2*n+1))/(4*sqrt(3/2)) + 1/2; e.g., 134 = 2^2*3*((1+sqrt(3/2))^5 - (1-sqrt(3/2))^5)/(4*sqrt(3/2)) + 1/2.
The last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: if q=(k+1)/k, then last(n) = k^n*(k+1)*((1+sqrt(q))^(2*n+1) - (1-sqrt(q))^(2*n+1))/(4*sqrt(q)) + (k-1)/2; e.g., if k=3 and n=2, then last(2) = 363 = 3^2*4*((1+sqrt(4/3))^5 - (1-sqrt(4/3))^5)/(4*sqrt(4/3)) + 2/2.
If u(n) is the numerator and e(n) is the denominator of the n-th continued fraction convergent to sqrt((k+1)/k), then the last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows:
last(2n+1) = (e(2n+1)^2 + k^2*e(2n)^2 + k*(k-1)*e(2n+1)*e(n))/k and, for n > 0, last(2n) = (k*(u(2n)^2 + u(2n-1)^2 + (k-1)*u(2n)*u(2n-1)))/(k+1); e.g., a(3) = 1322 = (40^2 + 2^2*9^2 + 2*1*40*9)/2 and a(4) = 13082 = (2*(109^2 + 49^2 + 1*109*49))/3.
If b(0)=1, b(1)=4k+2 and, for n > 1, b(n) = (4k+2)*b(n-1) - b(n-2), and last(n) is the last term of the n-th Consecutive Integer Pythagorean 2k+1-tuple as defined above, then Sum_{i=0..n} (k*last(i) - k(k-1)/2) = k(k+1)/2*b(n); e.g., if n=3, then 1 + 2 + 13 + 14 + 133 + 134 = 297 = 3*99.
If first(n) is the first term of the n-th Consecutive Integer Pythagorean 2k+1-tuple, then lim_{n->infinity} first(n+1)/first(n) = k*(1+sqrt((k+1)/k))^2 = 2k + 1 + 2*sqrt(k^2+k).

Examples

			a(3) = 134 since 108^2 + 109^2 + 110^2 = 133^2 + 134^2.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
  • W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11, -11, 1}, {2, 14, 134}, 25] (* Paolo Xausa, May 29 2025 *)
  • PARI
    for(y=0,oo,yy=(y+2)^2+(y+1)^2;for(x=sqrtint(yy\3),ceil(sqrt(yy/3)),x^2+(x-1)^2+(x-2)^2==yy&&print1(y+2,", "))) \\ For illustrative purpose. - M. F. Hasler, Oct 04 2014

Formula

For n > 1, a(n) = 10*a(n-1) - a(n-2) - 4; e.g., 1322 = 10*134 - 14 - 4.
Limit_{n->oo} a(n+1)/a(n) = 2*(1+sqrt(3/2))^2 = 5 + 2*sqrt(6).
G.f.: 2*(1-4*x+x^2)/((1-x)*(x^2-10*x+1)). - Colin Barker, Jan 01 2012
a(n) = 2*A253175(n+1). - R. J. Mathar, Feb 07 2022

Extensions

Edited by M. F. Hasler, Oct 04 2014

A253475 Indices of centered square numbers (A001844) which are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 6, 55, 540, 5341, 52866, 523315, 5180280, 51279481, 507614526, 5024865775, 49741043220, 492385566421, 4874114620986, 48248760643435, 477613491813360, 4727886157490161, 46801248083088246, 463284594673392295, 4586044698650834700, 45397162391834954701
Offset: 1

Views

Author

Colin Barker, Jan 02 2015

Keywords

Comments

Also positive integers x in the solutions to 4*x^2 - 6*y^2 - 4*x + 6*y = 0, the corresponding values of y being A054318.
Also indices of centered hexagonal numbers (A003215) which are also hexagonal numbers (A000384).
Also indices of terms in sequence A193218 which are the square root of a sum of 5th powers (A000539). - Daniel Poveda Parrilla, Jun 10 2017

Examples

			6 is in the sequence because the 6th centered square number is 61, which is also the 5th centered hexagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11, -11, 1}, {1, 6, 55}, 25] (* Paolo Xausa, May 30 2025 *)
  • PARI
    Vec(x*(5*x-1)/((x-1)*(x^2-10*x+1)) + O(x^100))

Formula

a(n) = 11*a(n-1)-11*a(n-2)+a(n-3).
G.f.: x*(5*x-1) / ((x-1)*(x^2-10*x+1)).
a(n) = sqrt((-2-(5-2*sqrt(6))^n-(5+2*sqrt(6))^n)*(2-(5-2*sqrt(6))^(1+n)-(5+2*sqrt(6))^(1+n)))/(4*sqrt(2)). - Gerry Martens, Jun 04 2015
2*a(n) = 1+A054320(n-1). - R. J. Mathar, Feb 07 2022

A006244 Hexagonal numbers (A000384) which are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 91, 8911, 873181, 85562821, 8384283271, 821574197731, 80505887094361, 7888755361049641, 773017519495770451, 75747828155224454551, 7422514141692500775541, 727330638057709851548461, 71270980015513872950973631, 6983828710882301839343867371, 684343942686450066382748028721
Offset: 1

Views

Author

Keywords

Comments

Equivalently, triangular hex numbers.

Examples

			a(1)=91 because 91 is the sixth centered hexagonal number and the seventh hexagonal number.
		

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 19.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    CP := n -> 1+1/2*6*(n^2-n): N:=10: u:=5: v:=1: x:=6: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+24*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp; # Steven Schlicker, Apr 24 2007
    A006244:=-(1-8*z+z**2)/(z-1)/(z**2-98*z+1); # Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.
    a := n -> (Matrix([[91,1,1]]). Matrix([[99,1,0],[ -99,0,1],[1,0,0]])^n)[1,3]; seq (a(n), n=1..20); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    CoefficientList[Series[(1 - 8*x + x^2)/(1 - 99*x + 99*x^2 - x^3), {x, 0, 20}], x] (* Jean-François Alcover, Feb 26 2015 *)
  • PARI
    Vec(-x*(x^2-8*x+1)/((x-1)*(x^2-98*x+1)) + O(x^100)) \\ Colin Barker, Jan 08 2015

Formula

From Richard Choulet, Sep 19 2007: (Start)
We must solve 2*r^2-r=3*p^2-3*p+1, which gives X^2=6*Y^2+3 with X=4*r-1 and Y=2*p-1. We obtain at the same time the following sequences:
X is given by 3, 27, 267, ... sequence for which a(n+2)=10*a(n+1)-a(n) and a(n+1)=5*a(n)+2*(6a(n)^2-18)^0.5
Y is given by 1, 11, 109, ... sequence for which a(n+2)=10*a(n+1)-a(n) and a(n+1)=5*a(n)+2*(6a(n)^2+3)^0.5
p is given by 1, 6, 55, 540, ... sequence for which a(n+2)=10*a(n+1)-a(n)-4 and a(n+1)=5*a(n)-2+(24*a(n)^2-24*a(n)+9)^0.5
r is given by 1, 7, 67, 661, ... sequence for which a(n+2)=10*a(n+1)-a(n)-2 and a(n+1)=5*a(n)-1+(24*a(n)^2-12*a(n)-3)^0.5
a(n+2) = 98*a(n+1)-a(n)-6, a(n+1)=49*a(n)-3+5*(96*a(n)^2-12*a(n)-3)^0.5.
G.f.: z*(1-8*z+z^2)/((1-z)*(1-98*z+z^2)). (End)
Define x(n) + y(n)*sqrt(24) = (6+sqrt(24))*(5+sqrt(24))^n, s(n) = (y(n)+1)/2; then a(n) = (1/2)*(2+6*(s(n)^2-s(n))). - Steven Schlicker, Apr 24 2007
a(n) = (A007667(n+1)-1)/4. - Ralf Stephan, Mar 03 2004
a(n) = 99*a(n-1)-99*a(n-2)+a(n-3). - Colin Barker, Jan 08 2015

Extensions

Edited by N. J. A. Sloane, Sep 25 2007
More terms from Alois P. Heinz, Aug 14 2008
More terms from Jon E. Schoenfield, Dec 26 2008
Showing 1-4 of 4 results.