A350923 a(0) = 2, a(1) = 2, and a(n) = 10*a(n-1) - a(n-2) - 4 for n >= 2.
2, 2, 14, 134, 1322, 13082, 129494, 1281854, 12689042, 125608562, 1243396574, 12308357174, 121840175162, 1206093394442, 11939093769254, 118184844298094, 1169909349211682, 11580908647818722, 114639177128975534, 1134810862641936614, 11233469449290390602, 111199883630261969402
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-11,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{11, -11, 1}, {2, 2, 14}, 25] (* Paolo Xausa, May 30 2025 *)
Formula
G.f.: 2*(1 - 10*x + 7*x^2)/((1 - x)*(1 - 10*x + x^2)). - Stefano Spezia, Jan 22 2022
From Hugo Pfoertner, Jan 22 2022: (Start)
a(n) = A031138(n) + 1.
a(n) = 3*A054318(n) - 1.
a(n) = 12*A097784(n-2) + 2 for n >= 2. (End)
a(n) = 2 * A253175(n) for n>=1. - Alois P. Heinz, Jan 22 2022
Comments