cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253175 Indices of hexagonal numbers (A000384) which are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 7, 67, 661, 6541, 64747, 640927, 6344521, 62804281, 621698287, 6154178587, 60920087581, 603046697221, 5969546884627, 59092422149047, 584954674605841, 5790454323909361, 57319588564487767, 567405431320968307, 5616734724645195301, 55599941815130984701
Offset: 1

Views

Author

Colin Barker, Jan 08 2015

Keywords

Comments

Also positive integers x in the solutions to 4*x^2-6*y^2-2*x+6*y-2 = 0, the corresponding values of y being A253475.

Examples

			7 is in the sequence because the 7th hexagonal number is 91, which is also the 6th centered hexagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11, -11, 1}, {1, 7, 67}, 25] (* Paolo Xausa, May 30 2025 *)
  • PARI
    Vec(-x*(x^2-4*x+1)/((x-1)*(x^2-10*x+1)) + O(x^100))

Formula

a(n) = 11*a(n-1)-11*a(n-2)+a(n-3).
G.f.: -x*(x^2-4*x+1) / ((x-1)*(x^2-10*x+1)).
a(n) = (2+(5-2*sqrt(6))^n*(3+sqrt(6))-(-3+sqrt(6))*(5+2*sqrt(6))^n)/8. - Colin Barker, Mar 05 2016
4*a(n) = 1+3*A072256(n). - R. J. Mathar, Feb 07 2022
a(n) = A350923(n)/2. - Paolo Xausa, May 30 2025

A087125 Indices k of hex numbers H(k) that are also triangular.

Original entry on oeis.org

0, 5, 54, 539, 5340, 52865, 523314, 5180279, 51279480, 507614525, 5024865774, 49741043219, 492385566420, 4874114620985, 48248760643434, 477613491813359, 4727886157490160, 46801248083088245, 463284594673392294, 4586044698650834699, 45397162391834954700
Offset: 0

Views

Author

Eric W. Weisstein, Aug 14 2003

Keywords

Comments

From the law of cosines, the non-Pythagorean triple {a(n), a(n)+1=A253475(n+1), A072256(n+1)} forms a near-isosceles triangle with the angle bounded by the consecutive sides equal to the regular tetrahedron's central angle (see A156546 and A247412). This implies also that a(n) are those numbers k such that (16/3)*A000217(k)+1 is a perfect square. - Federico Provvedi, Apr 04 2023

Crossrefs

Programs

  • Magma
    [Round((-4-(5-2*Sqrt(6))^n*(-2+Sqrt(6)) + (2+Sqrt(6))*(5 + 2*Sqrt(6))^n)/8): n in [0..25]]; // G. C. Greubel, Nov 04 2017
  • Mathematica
    CoefficientList[Series[(-x^2+5*x)/((1-x)*(1-10*x+x^2)), {x, 0, 25}], x] (* G. C. Greubel, Nov 04 2017 *)
    LinearRecurrence[{11,-11,1},{0,5,54},30] (* Harvey P. Dale, Jun 14 2022 *)
    Table[(x Sqrt[z^(2 n + 1) + z^-(2 n + 1) - 2] - 4) / 8 //. {x -> Sqrt[2], y -> Sqrt[3], z -> (5 + 2 x y)}, {n, 0, 100}] // Round (* Federico Provvedi, Apr 16 2023 *)
  • PARI
    concat(0, Vec(x*(x-5)/((x-1)*(x^2-10*x+1)) + O(x^50))) \\ Colin Barker, Jun 23 2015
    

Formula

G.f.: (-x^2+5*x)/((1-x)*(1-10*x+x^2)).
a(n) = 11*a(n-1) - 11*a(n-2) + a(n-3) for n > 2. - Colin Barker, Jun 23 2015
a(n) = (-4 - (5-2*sqrt(6))^n*(-2 + sqrt(6)) + (2+sqrt(6))*(5+2*sqrt(6))^n)/8. - Colin Barker, Mar 05 2016
a(n) = 10*a(n-1) - a(n-2) + 4 for n > 1. - Charlie Marion, Feb 14 2023
a(n) = ((x^(n+1)+1)*(x^n-1))/(2*x^n*(x-1)), with x=5+2*sqrt(6). - Federico Provvedi, Apr 04 2023
a(n) = sqrt(3*A161680(A054318(n+1)) + 1/4) - 1/2 = floor(sqrt(3*A000217(A054318(n+1)-1) + 1/4)). - Federico Provvedi, Apr 16 2023
Showing 1-2 of 2 results.