A253175
Indices of hexagonal numbers (A000384) which are also centered hexagonal numbers (A003215).
Original entry on oeis.org
1, 7, 67, 661, 6541, 64747, 640927, 6344521, 62804281, 621698287, 6154178587, 60920087581, 603046697221, 5969546884627, 59092422149047, 584954674605841, 5790454323909361, 57319588564487767, 567405431320968307, 5616734724645195301, 55599941815130984701
Offset: 1
7 is in the sequence because the 7th hexagonal number is 91, which is also the 6th centered hexagonal number.
-
LinearRecurrence[{11, -11, 1}, {1, 7, 67}, 25] (* Paolo Xausa, May 30 2025 *)
-
Vec(-x*(x^2-4*x+1)/((x-1)*(x^2-10*x+1)) + O(x^100))
A087125
Indices k of hex numbers H(k) that are also triangular.
Original entry on oeis.org
0, 5, 54, 539, 5340, 52865, 523314, 5180279, 51279480, 507614525, 5024865774, 49741043219, 492385566420, 4874114620985, 48248760643434, 477613491813359, 4727886157490160, 46801248083088245, 463284594673392294, 4586044698650834699, 45397162391834954700
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
- Eric Weisstein's World of Mathematics, Hex Number
- Index entries for linear recurrences with constant coefficients, signature (11,-11,1).
-
[Round((-4-(5-2*Sqrt(6))^n*(-2+Sqrt(6)) + (2+Sqrt(6))*(5 + 2*Sqrt(6))^n)/8): n in [0..25]]; // G. C. Greubel, Nov 04 2017
-
CoefficientList[Series[(-x^2+5*x)/((1-x)*(1-10*x+x^2)), {x, 0, 25}], x] (* G. C. Greubel, Nov 04 2017 *)
LinearRecurrence[{11,-11,1},{0,5,54},30] (* Harvey P. Dale, Jun 14 2022 *)
Table[(x Sqrt[z^(2 n + 1) + z^-(2 n + 1) - 2] - 4) / 8 //. {x -> Sqrt[2], y -> Sqrt[3], z -> (5 + 2 x y)}, {n, 0, 100}] // Round (* Federico Provvedi, Apr 16 2023 *)
-
concat(0, Vec(x*(x-5)/((x-1)*(x^2-10*x+1)) + O(x^50))) \\ Colin Barker, Jun 23 2015
Showing 1-2 of 2 results.
Comments