cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A350916 Positive integers k such that (k+1)^4 has a divisor congruent to -1 modulo k.

Original entry on oeis.org

1, 2, 3, 5, 9, 11, 14, 17, 29, 35, 41, 43, 59, 65, 69, 125, 134, 139, 174, 194, 339, 386, 449, 461, 681, 901, 937, 1169, 1322, 1325, 1715, 1971, 2211, 3054, 6395, 7989, 8857, 9077, 10849, 11483, 12545, 13082, 20909, 21506, 23861, 35233, 54734, 62210, 66923, 89045, 129494, 143289, 172899, 174725, 203321, 332315, 375129, 390051, 426389, 493697, 561513, 982094
Offset: 1

Views

Author

Max Alekseyev, Jan 21 2022

Keywords

Comments

For (k+1)^3 similar sequence is finite {1, 2, 3, 5, 9, 11, 14}, while for (k+1)^2 it is just {1, 2, 3, 5}. Starting with power 4 (this sequence), the number of values of k is infinite. One series of values for power 6 is given by A001570.
Formed by the union of 10 linear recurrent sequences satisfying b(n) = q*b(n-1) - b(n-2) - 4: A350919 (q=3), A350920 (q=4), A350921 (q=6), A350922 (q=7), A350923 (q=10), A103974 (q=14), A350924 (q=16), A350925 (q=16), A350926 (q=23), A350917 (q=23). Each of them give identities (b(n)+1)^4 = (b(n)*b(n-1)-1) * (b(n)*b(n+1)-1).
Only terms 1, 2, 5, 9, 11, 14, 29 are shared between two or more sequences, all others come from exactly one sequence.

Crossrefs

Programs

  • PARI
    { for(k=1,10^6, fordiv((k+1)^4,d, if(Mod(d,k)==-1, print1(k,", "); break)) ); }

A350923 a(0) = 2, a(1) = 2, and a(n) = 10*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

2, 2, 14, 134, 1322, 13082, 129494, 1281854, 12689042, 125608562, 1243396574, 12308357174, 121840175162, 1206093394442, 11939093769254, 118184844298094, 1169909349211682, 11580908647818722, 114639177128975534, 1134810862641936614, 11233469449290390602, 111199883630261969402
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
Essentially the same as A157085. - R. J. Mathar, Feb 07 2022

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350924, A350925, A350926.

Programs

  • Mathematica
    LinearRecurrence[{11, -11, 1}, {2, 2, 14}, 25] (* Paolo Xausa, May 30 2025 *)

Formula

G.f.: 2*(1 - 10*x + 7*x^2)/((1 - x)*(1 - 10*x + x^2)). - Stefano Spezia, Jan 22 2022
From Hugo Pfoertner, Jan 22 2022: (Start)
a(n) = A031138(n) + 1.
a(n) = 3*A054318(n) - 1.
a(n) = 12*A097784(n-2) + 2 for n >= 2. (End)
a(n) = 2 * A253175(n) for n>=1. - Alois P. Heinz, Jan 22 2022

A350917 a(0) = 1, a(1) = 2, and a(n) = 23*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

1, 2, 41, 937, 21506, 493697, 11333521, 260177282, 5972743961, 137112933817, 3147624733826, 72258255944177, 1658792261982241, 38079963769647362, 874180374439907081, 20068068648348215497, 460691398537569049346, 10575834097715739919457, 242783492848924449098161, 5573444501427546589338242, 127946440039984647105681401, 2937194676418219336841333977
Offset: 0

Views

Author

Max Alekseyev, Jan 21 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
Other properties for all n:
(a(n)+1)*(a(n+2)+1) = (a(n+1)+1)*(a(n+1)+26);
((105*a(n) - 20)^2 - 50^2) / 21 is an integer square.

Crossrefs

Cf. A350916.
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350919, A350920, A350921, A350922, A350923, A350924, A350925, A350926.

Formula

a(n) = 17/42*A090731(n) - 15/2*A097778(n-1) + 4/21.
G.f.: ( -1+22*x-17*x^2 ) / ( (x-1)*(x^2-23*x+1) ). - R. J. Mathar, Feb 07 2022

A350919 a(0) = 9, a(1) = 9, and a(n) = 3*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

9, 9, 14, 29, 69, 174, 449, 1169, 3054, 7989, 20909, 54734, 143289, 375129, 982094, 2571149, 6731349, 17622894, 46137329, 120789089, 316229934, 827900709, 2167472189, 5674515854, 14856075369, 38893710249, 101825055374, 266581455869, 697919312229, 1827176480814, 4783610130209, 12523653909809, 32787351599214, 85838400887829, 224727851064269
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350920, A350921, A350922, A350923, A350924, A350925, A350926.

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,3b-a-4}; NestList[nxt,{9,9},40][[;;,1]] (* or *) LinearRecurrence[{4,-4,1},{9,9,14},40] (* Harvey P. Dale, Jul 19 2024 *)

Formula

a(n) = 5*A032908(n) - 1. - Hugo Pfoertner, Jan 22 2022
G.f.: (3 - 2*x)*(3 - 7*x)/((1 - x)*(1 - 3*x + x^2)). - Stefano Spezia, Jan 22 2022
a(n) = 5*A001519(n) +4. - R. J. Mathar, Feb 07 2022

A350920 a(0) = 5, a(1) = 5, and a(n) = 4*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

5, 5, 11, 35, 125, 461, 1715, 6395, 23861, 89045, 332315, 1240211, 4628525, 17273885, 64467011, 240594155, 897909605, 3351044261, 12506267435, 46674025475, 174189834461, 650085312365, 2426151414995, 9054520347611, 33791929975445, 126113199554165, 470660868241211, 1756530273410675, 6555460225401485, 24465310628195261, 91305782287379555
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350921, A350922, A350923, A350924, A350925, A350926.

Formula

a(n) = 3*A001835(n) + 2. - Hugo Pfoertner, Jan 22 2022
G.f.: (5 - 20*x + 11*x^2)/((1 - x)*(1 - 4*x + x^2)). - Stefano Spezia, Jan 22 2022

A350921 a(0) = 3, a(1) = 3, and a(n) = 6*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

3, 3, 11, 59, 339, 1971, 11483, 66923, 390051, 2273379, 13250219, 77227931, 450117363, 2623476243, 15290740091, 89120964299, 519435045699, 3027489309891, 17645500813643, 102845515571963, 599427592618131, 3493720040136819, 20362892648202779, 118683635849079851, 691738922446276323
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350922, A350923, A350924, A350925, A350926.

Formula

G.f.: (3 - 18*x + 11*x^2)/((1 - x)*(1 - 6*x + x^2)). - Stefano Spezia, Jan 22 2022
a(n) = 2*A001653(n) + 1 = 4*A011900(n-1) - 1 for n >= 1. - Hugo Pfoertner, Jan 22 2022

A350924 a(0) = 1, a(1) = 3, and a(n) = 16*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

1, 3, 43, 681, 10849, 172899, 2755531, 43915593, 699893953, 11154387651, 177770308459, 2833170547689, 45152958454561, 719614164725283, 11468673677149963, 182779164669674121, 2912997961037635969, 46425188211932501379, 739890013429882386091, 11791815026666185676073
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Cf. A350916.
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350925, A350926.

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,16b-a-4}; NestList[nxt,{1,3},20][[All,1]] (* or *) LinearRecurrence[ {17,-17,1},{1,3,43},20] (* Harvey P. Dale, Jan 08 2023 *)
  • Python
    a350924 = [1, 3]
    for k in range(2, 100): a350924.append(16*a350924[k-1]-a350924[k-2]-4)
    print(a350924) # Karl-Heinz Hofmann, Jan 22 2022

Formula

G.f.: (1 - 14*x + 9*x^2)/((1 - x)*(1 - 16*x + x^2)). - Stefano Spezia, Jan 22 2022
7*a(n) = 2 +5*A077412(n) -61*A077412(n-1). - R. J. Mathar, Feb 07 2022

A350925 a(0) = 1, a(1) = 9, and a(n) = 16*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

1, 9, 139, 2211, 35233, 561513, 8948971, 142622019, 2273003329, 36225431241, 577333896523, 9201116913123, 146640536713441, 2337047470501929, 37246118991317419, 593600856390576771, 9460367583257910913, 150772280475735997833, 2402896120028518054411
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Cf. A350916.
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350924, A350926.

Programs

  • Mathematica
    LinearRecurrence[{17,-17,1},{1,9,139},20] (* Harvey P. Dale, Feb 09 2025 *)

Formula

G.f.: (1 - 8*x + 3*x^2)/((1 - x)*(1 - 16*x + x^2)). - Stefano Spezia, Jan 22 2022
7*a(n) = 2+5*A077412(n)-19*A077412(n-1). - R. J. Mathar, Feb 07 2022

A350926 a(0) = 1, a(1) = 17, and a(n) = 23*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

1, 17, 386, 8857, 203321, 4667522, 107149681, 2459775137, 56467678466, 1296296829577, 29758359401801, 683145969411842, 15682598937070561, 360016629583211057, 8264699881476783746, 189728080644382815097, 4355481154939327963481, 99986338482960160344962, 2295330303953144359970641
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

Crossrefs

Cf. A350916.
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350925, A350925.

Programs

  • Mathematica
    LinearRecurrence[{24,-24,1},{1,17,386},20] (* Harvey P. Dale, Jun 12 2022 *)

Formula

G.f.: (1 - 7*x + 2*x^2)/((1 - x)*(1 - 23*x + x^2)). - Stefano Spezia, Jan 22 2022
21*a(n) = 4+17*A097778(n)-38*A097778(n-1). - R. J. Mathar, Feb 07 2022

A368546 Alternative version of the Markov tree A327345.

Original entry on oeis.org

5, 13, 29, 34, 194, 433, 169, 89, 1325, 7561, 2897, 6466, 37666, 14701, 985, 233, 9077, 135137, 51641, 294685, 4400489, 1686049, 43261, 96557, 8399329, 48928105, 3276509, 1278818, 7453378, 499393, 5741, 610, 62210, 2423525, 925765, 13782649, 537169541
Offset: 0

Views

Author

William P. Orrick, Jan 04 2024

Keywords

Comments

The Markov tree is a complete, infinite binary tree. Vertices are labeled by triples. The root vertex is (1, 5, 2). The left child of (a, b, c) is (a, 3*a*b - c, b); its right child is (b, 3*b*c - a, c). The sequence is a triangle read by rows consisting of the middle element of each triple, which is always the largest element of the triple. Row r contains 2^r elements.
The tree contains contains exactly one representative of each class of permutation equivalent nonsingular solutions to Markov's equation, a^2 + b^2 + c^2 = 3 * a * b * c. Nonsingular solutions are those in which a, b, and c are three distinct numbers. The two singular triples (1, 1, 1) and (1, 2, 1) are omitted in this sequence.
A consequence of Markov's equation is that the recurrence for the tree may be reformulated as follows: the left child of (a, b, c) is (a, (a^2 + b^2) / c, b); its right child is (b, (b^2 + c^2) / a, c).
An open problem is to prove the uniqueness conjecture, which asserts that the largest element of a triple determines the other two.
Frobenius proposed assigning a rational number index in (0,1) to each vertex of the tree, and hence to each term in this sequence. This is the Farey index, obtained by assigning the triple (0/1, 1/2, 1/1) to the root vertex and using the following rules to assign triples to the rest of the tree: the vertex labeled (u/v, w/x, y/z) with w = u + u and x = v + z has left child (u/v, (u+w)/(v+x), w/x) and right child (w/x, (w+y)/(x+z), y/z). The Farey index is the center element of the triple. Each rational number in (0, 1) appears as the Farey index of exactly one vertex of the tree. The index of a(n) is A007305(n+2) / A007306(n+2).
A sequence of leftward steps in the tree produces odd-indexed Fibonacci numbers, A001519, which have Farey indices of the form 1 / n. A sequence of rightward steps in the tree produces odd-indexed Pell numbers, A001653, which have Farey indices of the form (n - 1) / n. A sequence of leftward steps followed by a single rightward step produces A350922, corresponding to Farey indices of the form 2 / (2 * n + 1). Alternating steps right, left, right, left, right, ... produces A064098, which corresponds to Farey indices of the form F(n) / F(n + 1), where F(n) is the n-th Fibonacci number.

Examples

			The initial levels of the tree are as follows. (See p. 47 of Aigner's book.)
                               (1,5,2)
             (1,13,5)                              (5,29,2)
   (1,34,13)         (13,194,5)         (5,433,29)             (29,169,2)
(1,        (34,     (13,     (194,    (5,       (433,       (29,       (169,
 89,        1325,    7561,    2897,    6466,     37666,      14701,     985,
 ,34)        13)      194)     5)       433)      29)         169)       2)
		

References

  • Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784.

Crossrefs

Other presentations of the Markov numbers, Markov triples, or the Markov tree: A002559, A253809, A291694, A305313, A305314, A327345.
Subsequences in the Markov tree: A001519, A001653, A350922, A064098.
Farey tree: A007305, A007306.

Programs

  • Python
    def Mtree(x): return(x[0],(3*x[0]*x[1])-x[2],x[1]), (x[1],(3*x[1]*x[2])-x[0],x[2])
    def A368546_rowlist(maxrow):
        A,B = [[(1,5,2)]],[]
        for n in range(maxrow+1):
            A.append([])
            for j in A[n]:
                B.append(max(j))
                for k in Mtree(j):
                    A[n+1].append(k)
        return(B) # John Tyler Rascoe, Feb 09 2024
  • SageMath
    def stripUpToFirst1(w):
        x = w
        while x % 2 == 0:
            x = x // 2
        return(x // 2)
    def stripUpToFirst0(w):
        x = w
        while x % 2 == 1:
            x = x // 2
        if x == 0:
            return(None)
        else:
            return(x // 2)
    @CachedFunction
    def markovNumber(w):
        if w == None:
            return(2)
        elif w == 0:
            return(1)
        elif w == 1:
            return(5)
        elif w % 2 == 0:
            return(3*markovNumber(stripUpToFirst1(w))*markovNumber(w//2) - markovNumber(stripUpToFirst0(w//2)))
        else:
            return(3*markovNumber(stripUpToFirst0(w))*markovNumber(w//2) - markovNumber(stripUpToFirst1(w//2)))
    [markovNumber(w) for w in range(1,38)]
    
Showing 1-10 of 10 results.