A368134 Characteristic numbers of Markov triples in the binary tree A368546.
2, 5, 12, 13, 75, 179, 70, 34, 507, 2923, 1120, 2673, 15571, 6089, 408, 89, 3468, 51709, 19760, 113922, 1701181, 651838, 16725, 39916, 3472225, 20226717, 1354498, 529673, 3087111, 206855, 2378, 233, 23763, 925943, 353702, 5273811, 205543262, 78545995, 770133
Offset: 0
Examples
The initial rows of the binary tree are 2 5 12 13 75 179 70 34 507 2923 1120 2673 15571 6089 408
References
- Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784
Links
- Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings, [archive.org copy of the book]
Crossrefs
Cf. A368546.
Programs
-
SageMath
rowM = [[1,5,2]] rowU = [[0,2,1]] a368134 = [2] for rw in range(1,6): prevRowM = rowM prevRowU = rowU rowM = [] rowU = [] for i in range(len(prevRowM)): [r,m,s] = prevRowM[i] [t,u,v] = prevRowU[i] ltM = [r,3*r*m - s,m] rtM = [m,3*m*s - r,s] ltU = [t,3*r*u - v,u] rtU = [u,3*u*s - t,v] rowM = rowM + [ltM,rtM] rowU = rowU + [ltU,rtU] a368134 = a368134 + [ltU[1],rtU[1]] a368134
Formula
Recurrence: The left child of the Markov triple (r, m, s) is (r, 3rm - s, m); the right child is (m, 3ms - r, s). The corresponding triple of characteristic numbers (t, u, v) has left child (t, 3ru - v, u) and right child (u, 3us - t, v). Initial Markov triple: (1, 5, 2), initial characteristic number triple: (0, 2, 1).
Comments