cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A072878 a(n) = 4*a(n-1)*a(n-2)*a(n-3) - a(n-4) with a(1) = a(2) = a(3) = a(4) = 1.

Original entry on oeis.org

1, 1, 1, 1, 3, 11, 131, 17291, 99665321, 903016046275353, 6224717403288400029624460201, 2240882930472585840954332388399544581477407095086361, 50384188378657848181032338163962292285660644698840136656562636145266593550842871302412156442811
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002

Keywords

Comments

A subsequence of the generalized Markoff numbers.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[n]==4a[n-1]a[n-2]a[n-3]-a[n-4]},a,{n,15}] (* Harvey P. Dale, Nov 29 2014 *)

Formula

a(1) = a(2) = a(3) = a(4) = 1; a(n) = (a(n-1)^2 + a(n-3)^2 + a(n-2)^2)/a(n-4) for n >= 5.
From the recurrence a(n) = 4*a(n-1)*a(n-2)*a(n-3) - a(n-4), any four successive terms satisfy the Markoff-Hurwitz equation a(n)^2 + a(n-1)^2 + a(n-2)^2 + a(n-3)^2 = 4*a(n)*a(n-1)*a(n-2)*a(n-3), cf. A075276. As n tends to infinity, the limit of log(log(a(n)))/n is log x = 0.6093778633..., where x=1.839286755... is the real root of the cubic x^3 - x^2 - x - 1 = 0. - Andrew Hone, Nov 14 2005

Extensions

Entry revised Nov 19 2005, based on comments from Andrew Hone
a(13) from Harvey P. Dale, Nov 29 2014
Name clarified by Petros Hadjicostas, May 11 2019

A072879 a(n) = 5*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5) with a(1) = a(2) = a(3) = a(4) = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 19, 379, 144019, 20741616379, 107553662508585672001, 608831069421618273050865038881215685876, 978035016076705458999330010986670207956236476587064788804921180339451725001
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002

Keywords

Comments

Solutions of the Hurwitz equation in five variables.

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_}]:={b,c,d,e,(5b c d e)-a}; NestList[nxt,{1,1,1,1,1},20][[All,1]] (* Harvey P. Dale, Nov 07 2016 *)

Formula

a(1) = a(2) = a(3) = a(4) = a(5) = 1; a(n) = (a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-4)^2)/a(n-5) for n >= 6.
From the recurrence a(n) = 5*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5), any five successive terms satisfy the five-variable Hurwitz equation a(n)^2+a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-4)^2 = 5*a(n)*a(n-1)*a(n-2)*a(n-3)*a(n-4). As n tends to infinity, the limit of log(log(a(n)))/n is log x = 0.6562559790..., where x=1.927561975... is the largest real root of the quartic x^4-x^3-x^2-x-1=0. - Andrew Hone, Nov 16 2005

Extensions

Entry revised Nov 19 2005, based on comments from Andrew Hone
Name clarified by Petros Hadjicostas, May 11 2019

A072880 A recurrence of order 6: a(1)=a(2)=a(3)=a(4)=a(5)=a(6)=1; a(n) = (a(n-1)^2 + a(n-2)^2 + a(n-3)^2 + a(n-4)^2 + a(n-5)^2)/a(n-6).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 5, 29, 869, 756029, 571580604869, 326704387862983487112029, 21347151409785350408171299054974277225256721769, 15713823217665540462976624783900822313284439536736221766688609460305249837839107387688348185
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002

Keywords

Comments

Any six successive terms satisfy the Markoff-Hurwitz equation a^2 + b^2 + c^2 + d^2 + e^2 + f^2 = 6*a*b*c*d*e*f. - Bruno Langlois, Aug 09 2016

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1]^2 + a[n - 2]^2 + a[n - 3]^2 + a[n -  4]^2 + a[n - 5]^2)/a[n - 6], a[1] == a[2] == a[3] == a[4] == a[5] == a[6] == 1}, a, {n, 1, 14}] (* Michael De Vlieger, Aug 11 2016 *)
    nxt[{a_, b_, c_, d_, e_, f_}] := {b, c, d, e, f,(b^2+c^2+d^2+e^2+f^2)/a}; NestList[ nxt, Table[1,6],20][[All,1]] (* Harvey P. Dale, Mar 18 2018 *)

Formula

a(n) = 6*a(n-1)*a(n-2)*a(n-3)*a(n-4)*a(n-5) - a(n-6). - Bruno Langlois, Aug 09 2016

A368546 Alternative version of the Markov tree A327345.

Original entry on oeis.org

5, 13, 29, 34, 194, 433, 169, 89, 1325, 7561, 2897, 6466, 37666, 14701, 985, 233, 9077, 135137, 51641, 294685, 4400489, 1686049, 43261, 96557, 8399329, 48928105, 3276509, 1278818, 7453378, 499393, 5741, 610, 62210, 2423525, 925765, 13782649, 537169541
Offset: 0

Views

Author

William P. Orrick, Jan 04 2024

Keywords

Comments

The Markov tree is a complete, infinite binary tree. Vertices are labeled by triples. The root vertex is (1, 5, 2). The left child of (a, b, c) is (a, 3*a*b - c, b); its right child is (b, 3*b*c - a, c). The sequence is a triangle read by rows consisting of the middle element of each triple, which is always the largest element of the triple. Row r contains 2^r elements.
The tree contains contains exactly one representative of each class of permutation equivalent nonsingular solutions to Markov's equation, a^2 + b^2 + c^2 = 3 * a * b * c. Nonsingular solutions are those in which a, b, and c are three distinct numbers. The two singular triples (1, 1, 1) and (1, 2, 1) are omitted in this sequence.
A consequence of Markov's equation is that the recurrence for the tree may be reformulated as follows: the left child of (a, b, c) is (a, (a^2 + b^2) / c, b); its right child is (b, (b^2 + c^2) / a, c).
An open problem is to prove the uniqueness conjecture, which asserts that the largest element of a triple determines the other two.
Frobenius proposed assigning a rational number index in (0,1) to each vertex of the tree, and hence to each term in this sequence. This is the Farey index, obtained by assigning the triple (0/1, 1/2, 1/1) to the root vertex and using the following rules to assign triples to the rest of the tree: the vertex labeled (u/v, w/x, y/z) with w = u + u and x = v + z has left child (u/v, (u+w)/(v+x), w/x) and right child (w/x, (w+y)/(x+z), y/z). The Farey index is the center element of the triple. Each rational number in (0, 1) appears as the Farey index of exactly one vertex of the tree. The index of a(n) is A007305(n+2) / A007306(n+2).
A sequence of leftward steps in the tree produces odd-indexed Fibonacci numbers, A001519, which have Farey indices of the form 1 / n. A sequence of rightward steps in the tree produces odd-indexed Pell numbers, A001653, which have Farey indices of the form (n - 1) / n. A sequence of leftward steps followed by a single rightward step produces A350922, corresponding to Farey indices of the form 2 / (2 * n + 1). Alternating steps right, left, right, left, right, ... produces A064098, which corresponds to Farey indices of the form F(n) / F(n + 1), where F(n) is the n-th Fibonacci number.

Examples

			The initial levels of the tree are as follows. (See p. 47 of Aigner's book.)
                               (1,5,2)
             (1,13,5)                              (5,29,2)
   (1,34,13)         (13,194,5)         (5,433,29)             (29,169,2)
(1,        (34,     (13,     (194,    (5,       (433,       (29,       (169,
 89,        1325,    7561,    2897,    6466,     37666,      14701,     985,
 ,34)        13)      194)     5)       433)      29)         169)       2)
		

References

  • Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784.

Crossrefs

Other presentations of the Markov numbers, Markov triples, or the Markov tree: A002559, A253809, A291694, A305313, A305314, A327345.
Subsequences in the Markov tree: A001519, A001653, A350922, A064098.
Farey tree: A007305, A007306.

Programs

  • Python
    def Mtree(x): return(x[0],(3*x[0]*x[1])-x[2],x[1]), (x[1],(3*x[1]*x[2])-x[0],x[2])
    def A368546_rowlist(maxrow):
        A,B = [[(1,5,2)]],[]
        for n in range(maxrow+1):
            A.append([])
            for j in A[n]:
                B.append(max(j))
                for k in Mtree(j):
                    A[n+1].append(k)
        return(B) # John Tyler Rascoe, Feb 09 2024
  • SageMath
    def stripUpToFirst1(w):
        x = w
        while x % 2 == 0:
            x = x // 2
        return(x // 2)
    def stripUpToFirst0(w):
        x = w
        while x % 2 == 1:
            x = x // 2
        if x == 0:
            return(None)
        else:
            return(x // 2)
    @CachedFunction
    def markovNumber(w):
        if w == None:
            return(2)
        elif w == 0:
            return(1)
        elif w == 1:
            return(5)
        elif w % 2 == 0:
            return(3*markovNumber(stripUpToFirst1(w))*markovNumber(w//2) - markovNumber(stripUpToFirst0(w//2)))
        else:
            return(3*markovNumber(stripUpToFirst0(w))*markovNumber(w//2) - markovNumber(stripUpToFirst1(w//2)))
    [markovNumber(w) for w in range(1,38)]
    

A165903 a(n) = (a(n-1)^2 + a(n-2)^2 + a(n-1)*a(n-2))/a(n-3) with three initial ones.

Original entry on oeis.org

1, 1, 1, 3, 13, 217, 16693, 21717363, 2175145909081, 283430597537694797281, 3699017428454717709381715649628841, 6290488320295607125006566146327310005599469877825552723
Offset: 0

Views

Author

Jaume Oliver Lafont, Sep 29 2009

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,1,1];; for n in [4..12] do a[n]:= (a[n-1]^2 + a[n-2]^2 + a[n-1]*a[n-2])/a[n-3]; od; a; # G. C. Greubel, Dec 19 2019
  • Magma
    I:=[1,1,1]; [n le 3 select I[n] else (Self(n-1)^2 + Self(n-2)^2 + Self(n-1)*Self(n-2))/Self(n-3): n in [1..12]]; // G. C. Greubel, Dec 19 2019
    
  • Maple
    a:= proc(n, k) option remember;
          if n<3 then 1
        else (a(n-1)^2 + a(n-2)^2 + a(n-1)*a(n-2))/a(n-3)
          fi; end:
    seq( a(n), n=0..12); # G. C. Greubel, Dec 19 2019
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==1,a[2]==1, a[n]==(a[n-1]^2+a[n-2]^2+a[n-1]*a[n-2])/a[n-3]},a,{n,0,10}] (* Vaclav Kotesovec, May 06 2015 *)
    nxt[{a_,b_,c_}]:={b,c,(c^2+b^2+b*c)/a}; NestList[nxt,{1,1,1},10][[All,1]] (* Harvey P. Dale, Oct 24 2022 *)
  • PARI
    a(n)=if(n<3,1,(a(n-1)^2 +a(n-2)^2 +a(n-1)*a(n-2))/a(n-3))
    
  • Sage
    @CachedFunction
    def a(n):
        if (n<3): return 1
        else: return (a(n-1)^2+a(n-2)^2+a(n-1)*a(n-2))/a(n-3)
    [a(n) for n in (0..12)] # G. C. Greubel, Dec 19 2019
    

Formula

a(n) ~ 1/6 * c^(((1+sqrt(5))/2)^n), where c = 1.902254978346365075882696720546123493664... . - Vaclav Kotesovec, May 06 2015
a(n) = 6*a(n-1)*a(n-2)-a(n-1)-a(n-2)-a(n-3). - Bruno Langlois, Aug 21 2016

Extensions

"frac" keyword removed by Jaume Oliver Lafont, Oct 13 2009

A072882 A nonlinear recurrence of order 3: a(1)=a(2)=a(3)=1; a(n)=(a(n-1)+a(n-2))^2/a(n-3).

Original entry on oeis.org

1, 1, 1, 4, 25, 841, 187489, 1418727556, 2393959458891025, 30567386265691995561839449, 658593751358960570203157512237008273218521, 181183406309644143341701434158730639946454023369335051404405528107396
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002

Keywords

Comments

All terms are perfect squares.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==1,a[3]==1, a[n]==(a[n-1]+a[n-2])^2/a[n-3]},a,{n,1,10}] (* Vaclav Kotesovec, May 06 2015 *)

Formula

a(n) ~ 1/9 * c^(((1+sqrt(5))/2)^n), where c = 1.6403763522562240514693138664331346215549... . - Vaclav Kotesovec, May 06 2015
a(n) = A064098(n)^2. - Seiichi Manyama, Aug 18 2016
From Seiichi Manyama, Aug 26 2016: (Start)
a(n) = 9*a(n-1)*a(n-2) - 2*a(n-1) - 2*a(n-2) - a(n-3).
a(n)*a(n-1)*a(n-2) = ((a(n) + a(n-1) + a(n-2))/3)^2. (End)

A276122 a(0) = a(1) = a(2) = 1; for n > 2, a(n) = (a(n-1)^2+a(n-2)^2+a(n-1)+a(n-2))/a(n-3).

Original entry on oeis.org

1, 1, 1, 4, 22, 526, 69427, 219111589, 91273561736491, 119994570874632853695766, 65713991236617279734602790963627271046, 47311933073383646516067037755547920981262829886906923065810924
Offset: 0

Views

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1]^2 + a[n - 2]^2 + a[n - 1] + a[n - 2])/a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 11}] (* Michael De Vlieger, Aug 21 2016 *)

Formula

a(n) = 6*a(n-1)*a(n-2)-a(n-3)-1.
a(n) ~ 1/6 * c^(phi^n), where c = 2.059783590102273... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 20 2017

Extensions

a(10) corrected by Seiichi Manyama, Aug 21 2016

A276258 a(n) = 4*a(n-1)*a(n-2) - a(n-3), with a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 3, 11, 131, 5761, 3018753, 69564144001, 839987873581797251, 233732149587751710483796746251, 785328685279672432967483833110876164468741280003, 734226246973363127354668827312570246092792043625372932024478449584047744277761
Offset: 1

Views

Author

Seiichi Manyama, Aug 25 2016

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == 4*a[n - 1]*a[n - 2] - a[n - 3], a[1] == 1,
      a[2] == 1, a[3] == 1}, a, {n, 1, 10}] (* G. C. Greubel, Aug 25 2016 *)
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n
        a = *a[1..-1], *a[1..-1].inject(:*) * (m + 1) - a[0]
        ary << a[0]
      end
      ary
    end
    def A276258(n)
      A(3, n)
    end

Formula

a(1)=a(2)=a(3)=1; a(n)=(a(n-1)^2+a(n-2)^2+1)/a(n-3).
a(n) ~ 1/4 * c^(((1+sqrt(5))/2)^n), where c = 1.41452525081158447693692520473959... . - Vaclav Kotesovec, Aug 26 2016
a(n)*a(n+1)*a(n+2) = (a(n)^2+a(n+1)^2+a(n+2)^2+1)/4. - Seiichi Manyama, Sep 04 2016

A258161 a(n) = a(n-1)^3/a(n-2) with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 8, 256, 2097152, 36028797018963968, 22300745198530623141535718272648361505980416
Offset: 0

Views

Author

Vaclav Kotesovec, May 22 2015

Keywords

Comments

The next term has 114 digits.

Crossrefs

Programs

  • Mathematica
    Clear[a]; RecurrenceTable[{a[n]==a[n-1]^3/a[n-2], a[0]==1, a[1]==2},a,{n,0,8}]
    Clear[a]; a[0]=2; a[n_]:=a[n]=Product[a[j]^(n-j),{j,0,n-1}]; Flatten[{1, Table[a[n], {n,1,8}]}]
    Table[2^(Fibonacci[2*n]), {n, 0, 8}]

Formula

a(n) = 2^(Fibonacci(2*n)).
Showing 1-9 of 9 results.