A072878
a(n) = 4*a(n-1)*a(n-2)*a(n-3) - a(n-4) with a(1) = a(2) = a(3) = a(4) = 1.
Original entry on oeis.org
1, 1, 1, 1, 3, 11, 131, 17291, 99665321, 903016046275353, 6224717403288400029624460201, 2240882930472585840954332388399544581477407095086361, 50384188378657848181032338163962292285660644698840136656562636145266593550842871302412156442811
Offset: 1
- Seiichi Manyama, Table of n, a(n) for n = 1..16
- Arthur Baragar, Integral solutions of the Markoff-Hurwitz equations, J. Number Theory 49 (1994), 27-44.
- Andrew N. W. Hone, Diophantine non-integrability of a third order recurrence with the Laurent property, arXiv:math/0601324 [math.NT], 2006.
- Andrew N. W. Hone, Diophantine non-integrability of a third order recurrence with the Laurent property, J. Phys. A: Math. Gen. 39 (2006), L171-L177.
- Matthew Christopher Russell, Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrence, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
-
RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[n]==4a[n-1]a[n-2]a[n-3]-a[n-4]},a,{n,15}] (* Harvey P. Dale, Nov 29 2014 *)
Entry revised Nov 19 2005, based on comments from
Andrew Hone
A072879
a(n) = 5*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5) with a(1) = a(2) = a(3) = a(4) = a(5) = 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 19, 379, 144019, 20741616379, 107553662508585672001, 608831069421618273050865038881215685876, 978035016076705458999330010986670207956236476587064788804921180339451725001
Offset: 1
- Seiichi Manyama, Table of n, a(n) for n = 1..16
- Arthur Baragar, Integral solutions of the Markoff-Hurwitz equations, J. Number Theory 49 (1994), 27-44.
- Andrew N. W. Hone, Diophantine non-integrability of a third order recurrence with the Laurent property, arXiv:math/0601324 [math.NT], 2006.
- Andrew N. W. Hone, Diophantine non-integrability of a third order recurrence with the Laurent property, J. Phys. A: Math. Gen. 39 (2006), L171-L177.
- Matthew Christopher Russell, Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
-
nxt[{a_,b_,c_,d_,e_}]:={b,c,d,e,(5b c d e)-a}; NestList[nxt,{1,1,1,1,1},20][[All,1]] (* Harvey P. Dale, Nov 07 2016 *)
Entry revised Nov 19 2005, based on comments from
Andrew Hone
A072880
A recurrence of order 6: a(1)=a(2)=a(3)=a(4)=a(5)=a(6)=1; a(n) = (a(n-1)^2 + a(n-2)^2 + a(n-3)^2 + a(n-4)^2 + a(n-5)^2)/a(n-6).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 5, 29, 869, 756029, 571580604869, 326704387862983487112029, 21347151409785350408171299054974277225256721769, 15713823217665540462976624783900822313284439536736221766688609460305249837839107387688348185
Offset: 1
- Seiichi Manyama, Table of n, a(n) for n = 1..17
- Andrew N. W. Hone, Diophantine non-integrability of a third order recurrence with the Laurent property, arXiv:math/0601324 [math.NT], 2006.
- Andrew N. W. Hone, Diophantine non-integrability of a third order recurrence with the Laurent property, J. Phys. A: Math. Gen. 39 (2006), L171-L177.
- Matthew Christopher Russell, Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
-
RecurrenceTable[{a[n] == (a[n - 1]^2 + a[n - 2]^2 + a[n - 3]^2 + a[n - 4]^2 + a[n - 5]^2)/a[n - 6], a[1] == a[2] == a[3] == a[4] == a[5] == a[6] == 1}, a, {n, 1, 14}] (* Michael De Vlieger, Aug 11 2016 *)
nxt[{a_, b_, c_, d_, e_, f_}] := {b, c, d, e, f,(b^2+c^2+d^2+e^2+f^2)/a}; NestList[ nxt, Table[1,6],20][[All,1]] (* Harvey P. Dale, Mar 18 2018 *)
A368546
Alternative version of the Markov tree A327345.
Original entry on oeis.org
5, 13, 29, 34, 194, 433, 169, 89, 1325, 7561, 2897, 6466, 37666, 14701, 985, 233, 9077, 135137, 51641, 294685, 4400489, 1686049, 43261, 96557, 8399329, 48928105, 3276509, 1278818, 7453378, 499393, 5741, 610, 62210, 2423525, 925765, 13782649, 537169541
Offset: 0
The initial levels of the tree are as follows. (See p. 47 of Aigner's book.)
(1,5,2)
(1,13,5) (5,29,2)
(1,34,13) (13,194,5) (5,433,29) (29,169,2)
(1, (34, (13, (194, (5, (433, (29, (169,
89, 1325, 7561, 2897, 6466, 37666, 14701, 985,
,34) 13) 194) 5) 433) 29) 169) 2)
- Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784.
-
def Mtree(x): return(x[0],(3*x[0]*x[1])-x[2],x[1]), (x[1],(3*x[1]*x[2])-x[0],x[2])
def A368546_rowlist(maxrow):
A,B = [[(1,5,2)]],[]
for n in range(maxrow+1):
A.append([])
for j in A[n]:
B.append(max(j))
for k in Mtree(j):
A[n+1].append(k)
return(B) # John Tyler Rascoe, Feb 09 2024
-
def stripUpToFirst1(w):
x = w
while x % 2 == 0:
x = x // 2
return(x // 2)
def stripUpToFirst0(w):
x = w
while x % 2 == 1:
x = x // 2
if x == 0:
return(None)
else:
return(x // 2)
@CachedFunction
def markovNumber(w):
if w == None:
return(2)
elif w == 0:
return(1)
elif w == 1:
return(5)
elif w % 2 == 0:
return(3*markovNumber(stripUpToFirst1(w))*markovNumber(w//2) - markovNumber(stripUpToFirst0(w//2)))
else:
return(3*markovNumber(stripUpToFirst0(w))*markovNumber(w//2) - markovNumber(stripUpToFirst1(w//2)))
[markovNumber(w) for w in range(1,38)]
A165903
a(n) = (a(n-1)^2 + a(n-2)^2 + a(n-1)*a(n-2))/a(n-3) with three initial ones.
Original entry on oeis.org
1, 1, 1, 3, 13, 217, 16693, 21717363, 2175145909081, 283430597537694797281, 3699017428454717709381715649628841, 6290488320295607125006566146327310005599469877825552723
Offset: 0
-
a:=[1,1,1];; for n in [4..12] do a[n]:= (a[n-1]^2 + a[n-2]^2 + a[n-1]*a[n-2])/a[n-3]; od; a; # G. C. Greubel, Dec 19 2019
-
I:=[1,1,1]; [n le 3 select I[n] else (Self(n-1)^2 + Self(n-2)^2 + Self(n-1)*Self(n-2))/Self(n-3): n in [1..12]]; // G. C. Greubel, Dec 19 2019
-
a:= proc(n, k) option remember;
if n<3 then 1
else (a(n-1)^2 + a(n-2)^2 + a(n-1)*a(n-2))/a(n-3)
fi; end:
seq( a(n), n=0..12); # G. C. Greubel, Dec 19 2019
-
RecurrenceTable[{a[0]==1,a[1]==1,a[2]==1, a[n]==(a[n-1]^2+a[n-2]^2+a[n-1]*a[n-2])/a[n-3]},a,{n,0,10}] (* Vaclav Kotesovec, May 06 2015 *)
nxt[{a_,b_,c_}]:={b,c,(c^2+b^2+b*c)/a}; NestList[nxt,{1,1,1},10][[All,1]] (* Harvey P. Dale, Oct 24 2022 *)
-
a(n)=if(n<3,1,(a(n-1)^2 +a(n-2)^2 +a(n-1)*a(n-2))/a(n-3))
-
@CachedFunction
def a(n):
if (n<3): return 1
else: return (a(n-1)^2+a(n-2)^2+a(n-1)*a(n-2))/a(n-3)
[a(n) for n in (0..12)] # G. C. Greubel, Dec 19 2019
A072882
A nonlinear recurrence of order 3: a(1)=a(2)=a(3)=1; a(n)=(a(n-1)+a(n-2))^2/a(n-3).
Original entry on oeis.org
1, 1, 1, 4, 25, 841, 187489, 1418727556, 2393959458891025, 30567386265691995561839449, 658593751358960570203157512237008273218521, 181183406309644143341701434158730639946454023369335051404405528107396
Offset: 1
-
RecurrenceTable[{a[1]==1,a[2]==1,a[3]==1, a[n]==(a[n-1]+a[n-2])^2/a[n-3]},a,{n,1,10}] (* Vaclav Kotesovec, May 06 2015 *)
A276122
a(0) = a(1) = a(2) = 1; for n > 2, a(n) = (a(n-1)^2+a(n-2)^2+a(n-1)+a(n-2))/a(n-3).
Original entry on oeis.org
1, 1, 1, 4, 22, 526, 69427, 219111589, 91273561736491, 119994570874632853695766, 65713991236617279734602790963627271046, 47311933073383646516067037755547920981262829886906923065810924
Offset: 0
-
RecurrenceTable[{a[n] == (a[n - 1]^2 + a[n - 2]^2 + a[n - 1] + a[n - 2])/a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 11}] (* Michael De Vlieger, Aug 21 2016 *)
A276258
a(n) = 4*a(n-1)*a(n-2) - a(n-3), with a(1) = a(2) = a(3) = 1.
Original entry on oeis.org
1, 1, 1, 3, 11, 131, 5761, 3018753, 69564144001, 839987873581797251, 233732149587751710483796746251, 785328685279672432967483833110876164468741280003, 734226246973363127354668827312570246092792043625372932024478449584047744277761
Offset: 1
-
RecurrenceTable[{a[n] == 4*a[n - 1]*a[n - 2] - a[n - 3], a[1] == 1,
a[2] == 1, a[3] == 1}, a, {n, 1, 10}] (* G. C. Greubel, Aug 25 2016 *)
-
def A(m, n)
a = Array.new(m, 1)
ary = [1]
while ary.size < n
a = *a[1..-1], *a[1..-1].inject(:*) * (m + 1) - a[0]
ary << a[0]
end
ary
end
def A276258(n)
A(3, n)
end
A258161
a(n) = a(n-1)^3/a(n-2) with a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 8, 256, 2097152, 36028797018963968, 22300745198530623141535718272648361505980416
Offset: 0
-
Clear[a]; RecurrenceTable[{a[n]==a[n-1]^3/a[n-2], a[0]==1, a[1]==2},a,{n,0,8}]
Clear[a]; a[0]=2; a[n_]:=a[n]=Product[a[j]^(n-j),{j,0,n-1}]; Flatten[{1, Table[a[n], {n,1,8}]}]
Table[2^(Fibonacci[2*n]), {n, 0, 8}]
Showing 1-9 of 9 results.
Comments