cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A072878 a(n) = 4*a(n-1)*a(n-2)*a(n-3) - a(n-4) with a(1) = a(2) = a(3) = a(4) = 1.

Original entry on oeis.org

1, 1, 1, 1, 3, 11, 131, 17291, 99665321, 903016046275353, 6224717403288400029624460201, 2240882930472585840954332388399544581477407095086361, 50384188378657848181032338163962292285660644698840136656562636145266593550842871302412156442811
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002

Keywords

Comments

A subsequence of the generalized Markoff numbers.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[n]==4a[n-1]a[n-2]a[n-3]-a[n-4]},a,{n,15}] (* Harvey P. Dale, Nov 29 2014 *)

Formula

a(1) = a(2) = a(3) = a(4) = 1; a(n) = (a(n-1)^2 + a(n-3)^2 + a(n-2)^2)/a(n-4) for n >= 5.
From the recurrence a(n) = 4*a(n-1)*a(n-2)*a(n-3) - a(n-4), any four successive terms satisfy the Markoff-Hurwitz equation a(n)^2 + a(n-1)^2 + a(n-2)^2 + a(n-3)^2 = 4*a(n)*a(n-1)*a(n-2)*a(n-3), cf. A075276. As n tends to infinity, the limit of log(log(a(n)))/n is log x = 0.6093778633..., where x=1.839286755... is the real root of the cubic x^3 - x^2 - x - 1 = 0. - Andrew Hone, Nov 14 2005

Extensions

Entry revised Nov 19 2005, based on comments from Andrew Hone
a(13) from Harvey P. Dale, Nov 29 2014
Name clarified by Petros Hadjicostas, May 11 2019

A072879 a(n) = 5*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5) with a(1) = a(2) = a(3) = a(4) = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 19, 379, 144019, 20741616379, 107553662508585672001, 608831069421618273050865038881215685876, 978035016076705458999330010986670207956236476587064788804921180339451725001
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002

Keywords

Comments

Solutions of the Hurwitz equation in five variables.

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_}]:={b,c,d,e,(5b c d e)-a}; NestList[nxt,{1,1,1,1,1},20][[All,1]] (* Harvey P. Dale, Nov 07 2016 *)

Formula

a(1) = a(2) = a(3) = a(4) = a(5) = 1; a(n) = (a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-4)^2)/a(n-5) for n >= 6.
From the recurrence a(n) = 5*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5), any five successive terms satisfy the five-variable Hurwitz equation a(n)^2+a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-4)^2 = 5*a(n)*a(n-1)*a(n-2)*a(n-3)*a(n-4). As n tends to infinity, the limit of log(log(a(n)))/n is log x = 0.6562559790..., where x=1.927561975... is the largest real root of the quartic x^4-x^3-x^2-x-1=0. - Andrew Hone, Nov 16 2005

Extensions

Entry revised Nov 19 2005, based on comments from Andrew Hone
Name clarified by Petros Hadjicostas, May 11 2019

A064098 a(n+1) = (a(n)^2 + a(n-1)^2)/a(n-2), with a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 2, 5, 29, 433, 37666, 48928105, 5528778008357, 811537892743746482789, 13460438563050022083842073547074914, 32770967840592833551621556305285371426044732591005957081
Offset: 1

Views

Author

Santi Spadaro, Sep 16 2001

Keywords

Comments

This sequence was introduced by Dana Scott but possibly studied earlier by others. - James Propp, Jan 27 2005
Sequence gives the upper-left entries of the respective matrices
[1 1] [1 0] [2 1] [5 2] [29 12] [433 179] [37666 15571]
[1 2] [0 1] [1 1] [2 1] [12 5] [179 74] [15571 6437], ...
satisfying the recurrence M(n) = M(n-1) M(n-3)^(-1) M(n-1) (note that the Fibonacci numbers satisfy the additive version of this recurrence). - James Propp, Jan 27 2005
Define b(1) = b(2) = b(3) = 1; b(n) = (b(n-1) + b(n-2))^2/b(n-3); then a(n) = sqrt(b(n)). - Benoit Cloitre, Jul 28 2002
Any 3 successive terms of the sequence satisfy the Markov equation x^2 + y^2 + z^2 = 3 xyz. Therefore from the 3rd term on this is a subsequence of the Markov numbers, A002559. Also, we conjecture that the limit of log(log(a(n)))/n is log((sqrt(5) + 1)/2). - Martin Giese (martin.giese(AT)oeaw.ac.at), Oct 13 2005
A subsequence of the Markoff numbers A002559. - Andrew Hone, Jan 16 2006
The recursion exhibits the Laurent phenomenon. Let F(n) = Fibonacci(n), e(n) = F(n) - 1, a(1) = a1, a(2) = a2, a(3) = a3, a(n) = (a(n-1)^2 + a(n-3)^2) / a(n-3), b(n) = a(n) * a1^e(n-1) * a2^e(n-2) * a3^e(n-3). Then b(n) for n > 1 is an irreducible polynomial in {a1^2, a2^2, a3^2}, b(n) = (b(n-1)^2 + (b(n-2) * a1^F(n-4) * a2^F(n-5) * a3^F(n-6))^2) / b(n-3), and a(n) = a(n-1) * a(n-2) * (a1^2 + a2^2 + a3^2) / (a1 * a2 * a3) - a(n-3). - Michael Somos, Jan 12 2013
Starting with n = 5, a(n) is the largest number in row n - 5 of the Markov tree, A368546. These numbers are obtained by descending the tree in alternating right and left steps; their Farey indices (see A368546 for the definition) are ratios of successive Fibonacci numbers, 1/2, 2/3, 3/5, 5/8, ... See Aigner, Proposition 10.2. - Wouter Meeussen and William P. Orrick, Feb 11 2024

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 5*x^5 + 29*x^6 + 433*x^7 + 37666*x^8 + ...
		

References

  • Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784

Crossrefs

Markov tree: A327345, A368546.

Programs

  • Magma
    [n le 3 select 1 else (Self(n-1)^2 + Self(n-2)^2)/Self(n-3): n in [1..16]]; // G. C. Greubel, Nov 07 2024
    
  • Maple
    f:=proc(n) option remember; global K; local i;
    if n <= K then 1
    else add(f(n-i)^2,i=1..K-1)/f(n-K); fi; end;
    K:=3;
    [seq(f(n),n=1..10)]; # N. J. A. Sloane, Mar 17 2017
  • Mathematica
    a[n_]:= (a[n-1]^2 +a[n-2]^2)/a[n-3]; a[1]=a[2]=a[3]=1; Array[a, 13] (* Or *)
    a[n_]:= 3*a[n-1]*a[n-2] - a[n-3]; a[1]= a[2]= a[3]= 1; Array[a, 13] (* Robert G. Wilson v, Dec 26 2012 *)
    nxt[{a_,b_,c_}]:={b,c,(c^2+b^2)/a}; NestList[nxt,{1,1,1},15][[;;,1]] (* Harvey P. Dale, Jul 07 2025 *)
  • PARI
    {a(n) = if( n<1, n = 4-n); if( n<4, 1, 3 * a(n-1) * a(n-2) - a(n-3))}; /* Michael Somos, Jan 12 2013 */
    
  • PARI
    { a=a3=a2=a1=1; for (n = 1, 18, if (n>3, a=(a1^2 + a2^2)/a3; a3=a2; a2=a1; a1=a); write("b064098.txt", n, " ", a) ) } /* Harry J. Smith, Sep 06 2009 */
    
  • SageMath
    def A064098(n):
        def a(n): return 1 if n<4 else (a(n-1)^2 + a(n-2)^2)/a(n-3)
        return a(n)
    [A064098(n) for n in range(16)] # G. C. Greubel, Nov 07 2024

Formula

Conjecture: lim_{n -> infinity} log(log(a(n)))/n exists = 0.48.... - Benoit Cloitre, Aug 07 2002. This is true - see below.
For this subsequence of the Markoff numbers, we have 2^(F(n-1) - 1) < a(n) < 3^(F(n-1) - 1) for n > 4, where F(n) are the Fibonacci numbers with F(0)=0, F(1)=1, F(n+1) = F(n) + F(n-1). Hence log(log(a(n)))/n tends to log((1 + sqrt(5))/2) as previously conjectured. - Andrew Hone, Jan 16 2006
a(n) = 3 * a(n-1) * a(n-2) - a(n-3). a(4-n) = a(n) for all n in Z. - Michael Somos, Jan 12 2013
a(n) ~ 1/3 * c^(((1 + sqrt(5))/2)^n), where c = 1.2807717799265504005186306582930649245... . - Vaclav Kotesovec, May 06 2015

Extensions

Entry improved by comments from Michael Somos, Sep 25 2001

A022405 a(n) = a(n-1)*a(n-2) - a(n-3), with a(1) = 0, a(2) = 1, a(3) = 2.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 10, 37, 366, 13532, 4952675, 67019597734, 331926286207224918, 22245566178948766568816183137, 7383888166355511098764350563784314022618210032
Offset: 1

Views

Author

Robert G. Wilson v, Jul 05 2000

Keywords

Comments

Theorem 1.1 of Hare et al. (2010, 2011) involves a shifted version of this sequence and the Fibonacci sequence A000045. (The program by Alonso del Arte below does involve a shifted version of this sequence.) - Petros Hadjicostas, May 11 2019

Crossrefs

Programs

  • Magma
    I:=[0,1,2]; [n le 3 select I[n] else Self(n-1)*Self(n-2) - Self(n-3): n in [1..15]];  // G. C. Greubel, Mar 01 2018
  • Mathematica
    a[1] = 0; a[2] = 1; a[3] = 2; a[n_] := a[n] = a[n - 1] a[n - 2] - a[n - 3]; Table[a[n], {n, 1, 15}] (* Alonso del Arte, Jan 31 2011 *)
    nxt[{a_,b_,c_}]:={b,c,c*b-a}; NestList[nxt,{0,1,2},15][[;;,1]] (* Harvey P. Dale, Mar 23 2025 *)

Formula

It appears that lim_{n->infinity} log(a(n))/phi^n = 0.07743008049000107520747623421744398272089261907514..., where phi = (1 + sqrt(5))/2 is the golden ratio A001622. - Petros Hadjicostas and Jon E. Schoenfield, May 11 2019

Extensions

Name clarified by Michel Marcus, May 10 2019

A061292 a(n) = a(n-1)*a(n-2)*a(n-3) - a(n-4) for n>3 with a(0) = a(1) = a(2) = a(3) = 2.

Original entry on oeis.org

2, 2, 2, 2, 6, 22, 262, 34582, 199330642, 1806032092550706, 12449434806576800059248920402, 4481765860945171681908664776799089162954814190172722
Offset: 0

Views

Author

Stephen G Penrice, Jun 04 2001

Keywords

Comments

Any four consecutive terms are a solution to the Diophantine equation w^2 + x^2 + y^2 + z^2 = wxyz.
a(n) = 2 * A072878(n+1).

Crossrefs

Programs

  • Haskell
    a061292 n = a061292_list !! n
    a061292_list = 2 : 2 : 2 : 2 : zipWith (-)
       (zipWith3 (((*) .) . (*)) (drop 2 xs) (tail xs) xs) a061292_list
       where xs = tail a061292_list
    -- Reinhard Zumkeller, Mar 25 2015
  • Magma
    I:=[2,2,2,2]; [n le 4 select I[n] else Self(n-1)*Self(n-2)*Self(n-3)-Self(n-4): n in [1..12]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    a[1] := 2; a[2] := 2; a[3] := 2; a[4] := 2; a[n_] := a[n - 1]*a[n - 2]*a[n - 3] - a[n - 4]; Table[a[n], {n, 1, 15}] (* Stefan Steinerberger, Mar 31 2006 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==2,a[n]==a[n-1]a[n-2]a[n-3]- a[n-4]},a[n],{n,12}] (* Harvey P. Dale, Sep 15 2011 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org) and Jason Earls, Jun 05 2001

A072877 a(1) = a(2) = a(3) = a(4) = 1; a(n) = (a(n-1)*a(n-3) + a(n-2)^4)/a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 19, 119, 65339, 67258454, 959259994615659593, 171965197021698738644442682357, 12959040525296547835480490169418622922155526267774117749963303914461
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002

Keywords

Comments

A variation of a Somos-4 sequence with a(n-2)^4 in place of a(n-2)^2.

Crossrefs

Programs

  • Maple
    L[0]:=0; L[1]:=0; L[2]:=0; L[3]:=0; for n from 0 to 4000 do L[n+4]:=evalf(ln(1+exp(L[n+3]+L[n+1]-4*L[n+2]))+4*L[n+2]-L[n]): od: for n from 3990 to 4000 do print(evalf(ln(L[n+4])/(n+4))): od: #Note: L[n] is log(a[n]) # Andrew Hone, Nov 15 2005
  • Mathematica
    nxt[{a_,b_,c_,d_}]:={b,c,d,(d*b+c^4)/a}; NestList[nxt,{1,1,1,1},15][[All,1]] (* Harvey P. Dale, Jun 01 2022 *)

Formula

Lim_{n->infinity} (log(log(a(n))))/n = log(2+sqrt(3))/2 = A065918/2 or about 0.658. - Andrew Hone, Nov 15 2005; corrected by Michel Marcus, May 12 2019
From Jon E. Schoenfield, May 12 2019: (Start)
It appears that, for n >= 1,
a(n) = ceiling(e^(c0*x^n + d0/x^n)) if n is even,
ceiling(e^(c1*x^n + d1/x^n)) if n is odd,
where
x = sqrt(2 + sqrt(3)) = (sqrt(2) + sqrt(6))/2
c0 = 0.024915247166055931001426396817534982995670642690...
c1 = 0.029604794868229453467890216788323427656809346011...
d0 = -10.535089427608481105514469573411011428431309483956...
d1 = -2.856773870202800001336732759121362374871088274450...
(End)

Extensions

Definition corrected by Matthew C. Russell, Apr 24 2012

A061021 a(n) = a(n-1)*a(n-2) - a(n-3) with a(0) = a(1) = a(2) = 3.

Original entry on oeis.org

3, 3, 3, 6, 15, 87, 1299, 112998, 146784315, 16586334025071, 2434613678231239448367, 40381315689150066251526220641224742, 98312903521778500654864668915856114278134197773017871243
Offset: 0

Views

Author

Stephen G Penrice, May 23 2001

Keywords

Comments

Any three consecutive terms are a solution to the Diophantine equation x^2 + y^2 + z^2 = xyz.

Crossrefs

Programs

  • Haskell
    a061021 n = a061021_list !! n
    a061021_list = 3 : 3 : 3 : zipWith (-)
    (tail $ zipWith (*) (tail a061021_list) a061021_list) a061021_list
    -- Reinhard Zumkeller, Mar 25 2015
  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1] a[n - 2] - a[n - 3], a[0] == a[1] == a[2] == 3}, a, {n, 0, 12}] (* Michael De Vlieger, Aug 21 2016 *)
  • PARI
    for (n=0, 17, if (n>2, a=a1*a2 - a3; a3=a2; a2=a1; a1=a, if (n==0, a=a3=3, if (n==1, a=a2=3, a=a1=3))); write("b061021.txt", n, " ", a)) \\ Harry J. Smith, Jul 16 2009
    

Formula

From Jon E. Schoenfield, May 12 2019: (Start)
It appears that, for n >= 1,
a(n) = ceiling(e^(c0*phi^n - c1/(-phi)^n))
where
phi = (1 + sqrt(5))/2,
c0 = 0.4004033011137849744572073756789830081726425559860...
c1 = 0.2798639753144007577581523025628820390768226527315...
(End)

Extensions

More terms from Erich Friedman, Jun 03 2001
Name clarified by Petros Hadjicostas, May 11 2019

A074394 a(n) = a(n-1)*a(n-2) - a(n-3) with a(1) = 1, a(2) = 2, and a(3) = 3.

Original entry on oeis.org

1, 2, 3, 5, 13, 62, 801, 49649, 39768787, 1974480504962, 78522694637486171445, 155041529758800625329015665441303, 12174278697379026530632791354719900462885271361687873
Offset: 1

Views

Author

Henry Bottomley, Sep 24 2002

Keywords

Comments

All consecutive quadruples are pairwise coprime. Multiples of 2 occur when n=2 mod 4, multiples of 3 when n=3 mod 4, multiples of 5 when n=4 mod 7, multiples of 7 when n=10 mod 14, multiples of 9 when n=7 or 11 mod 24, multiples of 10 when n=18 mod 28. Multiples of 4, 6 and 8 never occur.

Examples

			a(6) = a(5)*a(4) - a(3) = 13*5 - 3 = 62.
		

Crossrefs

Programs

  • Haskell
    a074394 n = a074394_list !! (n-1)
    a074394_list = 1 : 2 : 3 : zipWith (-)
       (tail $ zipWith (*) (tail a074394_list) a074394_list) a074394_list
    -- Reinhard Zumkeller, Mar 25 2015
  • Mathematica
    nxt[{a_,b_,c_}]:={b,c,b*c-a}; NestList[nxt,{1,2,3},15][[All,1]] (* Harvey P. Dale, Jan 21 2023 *)

Formula

Lim_{n->infinity} a(n+1)/a(n)^phi = 1, where phi is the golden ratio (1+sqrt(5))/2 = A001622. - Benoit Cloitre, Sep 26 2002
From Jon E. Schoenfield, May 13 2019: (Start)
It appears that, for n >= 2,
a(n) = ceiling(e^(c*phi^n - d/(-phi)^n))
where
phi = (1 + sqrt(5))/2
c = 0.230193077518834725477008740044380256486365499661...
d = 0.067704372842879037264190305626317036100889750046...
(End)
Showing 1-8 of 8 results.