A296010 Sum of the squares of the number of parts in all partitions of n.
0, 1, 5, 14, 34, 68, 133, 232, 402, 652, 1048, 1609, 2465, 3640, 5358, 7694, 10993, 15399, 21498, 29520, 40394, 54572, 73425, 97756, 129710, 170525, 223428, 290552, 376551, 484819, 622317, 794167, 1010515, 1279376, 1615126, 2029948, 2544600, 3176856, 3956277
Offset: 0
Keywords
Examples
For n=4, the 5 partitions of 4 are 4, 3+1, 2+2, 2+1+1, and 1+1+1+1. These have 1, 2, 2, 3, and 4 parts, respectively. The sum of the squares is 1+4+4+9+16=34.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000 (terms 0..115 from Robert G. Wilson v)
Programs
-
Maple
K:=[]: for n from 0 to 20 do co:=0: for L in combinat[partition](n) do co:=co+nops(L)^2: od: K:=[op(K),co]: od: K; # second Maple program: b:= proc(n, i, c) option remember; `if`(n=0 or i=1, (n+c)^2, `if`(i>n, 0, b(n-i, i, c+1))+b(n, i-1, c)) end: a:= n-> b(n$2, 0): seq(a(n), n=0..50); # Alois P. Heinz, Dec 02 2017
-
Mathematica
f[n_] := Sum[i^2 (Length@ IntegerPartitions[n, {i}]), {i, n}]; Array[f, 34, 0] (* Robert G. Wilson v, Dec 02 2017 *) b[n_, i_, c_] := b[n, i, c] = If[n == 0 || i == 1, (n + c)^2, If[i > n, 0, b[n - i, i, c + 1]] + b[n, i - 1, c]]; a[n_] := b[n, n, 0]; a /@ Range[0, 50] (* Jean-François Alcover, Jun 06 2021, after Alois P. Heinz *)
-
PARI
first(n)=my(x='x+O('x^(n+1)),pr=1); concat(0,Vec(sum(j=1,n,pr*=1-x^j; j^2*x^j/pr))) \\ Charles R Greathouse IV, Dec 02 2017
Formula
G.f.: Sum_{j>=1} j^2*x^j / Product_{i=1..j} (1-x^i). - Alois P. Heinz, Dec 02 2017
Comments