cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Matthew C. Russell

Matthew C. Russell's wiki page.

Matthew C. Russell has authored 41 sequences. Here are the ten most recent ones:

A296010 Sum of the squares of the number of parts in all partitions of n.

Original entry on oeis.org

0, 1, 5, 14, 34, 68, 133, 232, 402, 652, 1048, 1609, 2465, 3640, 5358, 7694, 10993, 15399, 21498, 29520, 40394, 54572, 73425, 97756, 129710, 170525, 223428, 290552, 376551, 484819, 622317, 794167, 1010515, 1279376, 1615126, 2029948, 2544600, 3176856, 3956277
Offset: 0

Author

Matthew C. Russell, Dec 02 2017

Keywords

Examples

			For n=4, the 5 partitions of 4 are 4, 3+1, 2+2, 2+1+1, and 1+1+1+1. These have 1, 2, 2, 3, and 4 parts, respectively. The sum of the squares is 1+4+4+9+16=34.
		

Crossrefs

Programs

  • Maple
    K:=[]:
    for n from 0 to 20 do
    co:=0:
    for L in combinat[partition](n) do
    co:=co+nops(L)^2:
    od:
    K:=[op(K),co]:
    od:
    K;
    # second Maple program:
    b:= proc(n, i, c) option remember; `if`(n=0 or i=1,
          (n+c)^2, `if`(i>n, 0, b(n-i, i, c+1))+b(n, i-1, c))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 02 2017
  • Mathematica
    f[n_] := Sum[i^2 (Length@ IntegerPartitions[n, {i}]), {i, n}]; Array[f, 34, 0] (* Robert G. Wilson v, Dec 02 2017 *)
    b[n_, i_, c_] := b[n, i, c] = If[n == 0 || i == 1,
         (n + c)^2, If[i > n, 0, b[n - i, i, c + 1]] + b[n, i - 1, c]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, Jun 06 2021, after Alois P. Heinz *)
  • PARI
    first(n)=my(x='x+O('x^(n+1)),pr=1); concat(0,Vec(sum(j=1,n,pr*=1-x^j; j^2*x^j/pr))) \\ Charles R Greathouse IV, Dec 02 2017

Formula

G.f.: Sum_{j>=1} j^2*x^j / Product_{i=1..j} (1-x^i). - Alois P. Heinz, Dec 02 2017

A272397 Number of partitions of n into parts congruent to 1, 3, 6, 8 (mod 9).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 4, 4, 5, 7, 8, 9, 13, 14, 16, 21, 24, 27, 35, 39, 45, 55, 62, 70, 86, 96, 109, 130, 146, 164, 195, 217, 245, 285, 319, 357, 415, 461, 517, 592, 660, 735, 840, 931, 1038, 1175, 1304, 1446, 1634, 1805, 2002, 2246, 2482, 2742, 3070, 3381, 3734
Offset: 0

Author

Matthew C. Russell, Apr 28 2016

Keywords

Comments

"Sum side" conjecture: also equals number of partitions pi = (pi_1, pi_2, ...) of n (with pi_1 >= pi_2 >= ...) such that pi(i)-pi(i+2) >= 3 and, if pi(i) - pi(i+1) <= 1, then pi(i) + pi(i+1) is congruent to 0 (mod 3).

Examples

			For n=10, the a(10)=8 partitions are 10, 8+1+1, 6+3+1, 6+1+1+1, 3+3+3+1, 3+3+1+1+1+1. 3+1+1+1+1+1+1+1, and 1+1+1+1+1+1+1+1+1+1.
For the conjectured "sum side", the a(10)=8 partitions are 10, 9+1, 8+2, 7+3, 7+2+1, 6+4, 6+3+1, and 5+4+1.
		

Crossrefs

Cf. A000726: partitions of 3n into parts == {3,6} mod 9.

Programs

  • Mathematica
    Table[Length@ Select[IntegerPartitions@ n, AllTrue[Mod[#, 9], MemberQ[{1, 3, 6, 8}, #] &] &], {n, 0, 50}] (* Michael De Vlieger, Apr 28 2016, Version 10 *)

A230058 Numbers of the form k + wt(k) for at least two distinct k, where wt(k) = A000120(k) is the binary weight of k.

Original entry on oeis.org

5, 14, 17, 19, 22, 31, 33, 36, 38, 47, 50, 52, 55, 64, 67, 70, 79, 82, 84, 87, 96, 98, 101, 103, 112, 115, 117, 120, 129, 131, 132, 134, 143, 146, 148, 151, 160, 162, 165, 167, 176, 179, 181, 184, 193, 196, 199, 208, 211, 213, 216, 225, 227, 230, 232, 241, 244
Offset: 1

Author

Matthew C. Russell, Oct 07 2013

Keywords

Comments

The positions of entries greater than 1 in A228085, or numbers that appear multiple times in A092391.
Numbers that can be expressed as the sum of distinct terms of the form 2^n+1, n=0,1,... in multiple ways.

Examples

			5 = 3 + 2 = 4 + 1, so 5 is in this list.
		

Crossrefs

Programs

  • Mathematica
    Sort[Transpose[Select[Tally[Table[k + Total[IntegerDigits[k, 2]], {k, 0, 300}]], #[[2]] > 1 &]][[1]]] (* T. D. Noe, Oct 09 2013 *)

A229744 Values of records in A096303.

Original entry on oeis.org

0, 1, 4, 6, 7, 10, 11, 20, 21, 23, 32, 33, 38, 47, 51, 52, 53, 54, 78, 101, 106, 122, 177, 205, 216, 370, 373, 383, 393, 411, 753, 757, 758, 763
Offset: 1

Author

Matthew C. Russell and Nathan Fox, Oct 06 2013

Keywords

Crossrefs

Extensions

a(15)-a(34) from Donovan Johnson, Oct 07 2013

A229743 Positions of records in A096303.

Original entry on oeis.org

1, 4, 6, 21, 46, 86, 359, 914, 1432, 1682, 1810, 1816, 2840, 3608, 15141, 15909, 24120, 28197, 30245, 31781, 16514098, 66058853, 67105381, 117437029, 134148709, 134210149, 234873445, 251650661, 267903589, 268411493, 268419685, 402637413, 532660837, 534757989
Offset: 1

Author

Matthew C. Russell and Nathan Fox, Oct 06 2013

Keywords

Crossrefs

Extensions

a(15)-a(34) from Donovan Johnson, Oct 07 2013

A211882 Number of integral circulant graphs with perfect state transfer on 4*n vertices.

Original entry on oeis.org

2, 2, 4, 4, 4, 16, 4, 8, 8, 16, 4, 256, 4, 16, 16, 16, 4, 512, 4, 256, 16, 16, 4, 4096, 8, 16, 16, 256, 4, 65536, 4, 32, 16, 16, 16, 262144, 4, 16, 16, 4096, 4, 65536, 4, 256, 64, 16, 4, 65536, 8, 512, 16, 256, 4, 65536, 16, 4096, 16, 16, 4, 4294967296
Offset: 1

Author

Matthew C. Russell, Apr 25 2012

Keywords

Examples

			For n=1 there are a(1)=2 graphs with perfect state transfer: C_4 and the disjoint union of two copies of K_2.
		

A208222 a(n) = (a(n-1)^3*a(n-3)^2+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 9, 731, 1562471573, 154486807085783774292345385804
Offset: 0

Author

Matthew C. Russell, Apr 25 2012

Keywords

Comments

This is the case a=2, b=1, c=3, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).

Crossrefs

Programs

  • Maple
    y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^3*y(n-3)^2+y(n-2))/y(n-4): end:
    seq(y(n),n=0..9);
  • Mathematica
    a[n_]:=If[n<4,1, (a[n - 1]^3*a[n - 3]^2 + a[n - 2])/a[n - 4]]; Table[a[n], {n, 0, 11}] (* Indranil Ghosh, Mar 19 2017 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,(d^3 b^2+c)/a}; NestList[nxt,{1,1,1,1},10][[All,1]] (* Harvey P. Dale, May 31 2020 *)

A208221 a(n)=(a(n-1)^2*a(n-3)^2+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 27, 2921, 106653026, 1658455747832683945, 869174798276372512100586962107665002957113
Offset: 0

Author

Matthew C. Russell, Apr 25 2012

Keywords

Comments

This is the case a=2, b=1, c=2, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).
The next term (a(11)) has 97 digits. - Harvey P. Dale, Dec 17 2017

Crossrefs

Programs

  • Maple
    y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)^2+y(n-2))/y(n-4): end:
    seq(y(n),n=0..11);
  • Mathematica
    a[n_] := a[n] = If[n <= 3, 1, (a[n-1]^2*a[n-3]^2 + a[n-2])/a[n-4]];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 24 2017 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^2 a[n-3]^2+ a[n-2])/ a[n-4]},a,{n,12}] (* Harvey P. Dale, Dec 17 2017 *)

A208219 a(n)=(a(n-1)^3*a(n-3)+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 9, 731, 781235791, 2145650135491172007486084385, 802327342392981520933850619811649523436811893002103478524225246677189521545661182074
Offset: 0

Author

Matthew C. Russell, Apr 25 2012

Keywords

Comments

This is the case a=1, b=1, c=3, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).
The next term (a(10)) has 258 digits. - Harvey P. Dale, Sep 21 2016

Crossrefs

Programs

  • Maple
    y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^3*y(n-3)+y(n-2))/y(n-4): end:
    seq(y(n),n=0..9);
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^3 a[n-3]+ a[n-2])/ a[n-4]},a,{n,10}] (* Harvey P. Dale, Sep 21 2016 *)

A208224 a(n)=(a(n-1)^2*a(n-3)^3+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 27, 5837, 2129410576, 17850077316687753782569, 2346851008195218976646246398770505953580095510848345967
Offset: 0

Author

Matthew C. Russell, Apr 25 2012

Keywords

Comments

This is the case a=3, b=1, c=2, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).
The next term (a(11)) has 133 digits. - Harvey P. Dale, Mar 06 2017

Crossrefs

Programs

  • Maple
    y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)^3+y(n-2))/y(n-4): end:
    seq(y(n),n=0..11);
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^2*a[n-3]^3+ a[n-2])/ a[n-4]},a,{n,10}] (* Harvey P. Dale, Mar 06 2017 *)