0, 1, 0, 1, 2, 1, 2, 0, 3, 2, 5, 2, 4, 1, 3, 3, 3, 2, 3, 4, 1, 5, 3, 7, 2, 3, 3, 3, 4, 4, 5, 3, 6, 12, 2, 1, 3, 2, 6, 10, 4, 8, 6, 3, 4, 2, 3, 1, 3, 4, 9, 3, 2, 2, 5, 7, 4, 8, 7, 5, 6, 6, 6, 1, 8, 7, 4, 6, 6, 2, 5, 7, 5, 5, 4, 5, 3, 4, 3, 5, 2, 4, 7, 8, 3, 7, 7
Offset: 2
A377086
Number of fixed points under iteration of the map sending a positive integer to the product of its leading base-n digit and the sum of the squares of its base-n digits.
Original entry on oeis.org
1, 2, 2, 1, 1, 4, 3, 4, 2, 3, 1, 3, 5, 2, 4, 4, 2, 4, 1, 3, 3, 3, 1, 5, 2, 3, 5, 4, 4, 9, 2, 1, 1, 4, 2, 6, 4, 1, 2, 5, 3, 6, 3, 1, 2, 3, 1, 7, 2, 1, 3, 3, 1, 5, 4, 6, 5, 4, 2, 8, 3, 2, 7, 3, 1, 4, 4, 2, 3, 6, 3, 9, 2, 3, 4, 9, 3, 7, 3, 2, 6, 5, 1, 7, 3, 3, 3
Offset: 2
N. Bradley Fox, Nathan Fox, Helen Grundman, Rachel Lynn, Changningphaabi Namoijam, Mary Vanderschoot, Oct 15 2024
Original entry on oeis.org
0, 1, 1, 5, 5, 6, 5, 6, 8, 9, 7, 11, 12, 11, 11, 14, 15, 16, 14, 16, 18, 18, 15, 22, 23, 20, 18, 27, 24, 23, 22, 28, 27, 27, 23, 31, 30, 28, 24, 35, 33, 32, 27, 34, 34, 34, 30, 40, 39, 36, 32, 40, 39, 40, 35, 44, 43, 42, 35, 45, 46, 43, 38, 51, 47, 47, 41, 49, 50
Offset: 3
N. Bradley Fox, Nathan Fox, Helen Grundman, Rachel Lynn, Changningphaabi Namoijam, Mary Vanderschoot, Oct 15 2024
A377084
a(n) is the maximum integer for which some minimum-length sum equaling a(n) of perfect squares less than n^2 excludes (n-1)^2.
Original entry on oeis.org
3, 16, 31, 128, 191, 324, 368, 561, 891, 1200, 1104, 1993, 2535, 2692, 2896, 4321, 4880, 5832, 5776, 7485, 9144, 9680, 8903, 14353, 15576, 14872, 14527, 22736, 21697, 22500, 22587, 30537, 31451, 33524, 30076, 42768, 43664, 43097, 39317, 59200, 58835, 59893
Offset: 3
N. Bradley Fox, Nathan Fox, Helen Grundman, Rachel Lynn, Changningphaabi Namoijam, Mary Vanderschoot, Oct 15 2024
561 cannot be written as a sum of fewer than nine perfect squares less than 10^2. 561 can be written as a sum of nine of these numbers in five ways:
561 = 1^2 + 5^2 + 7^2 + 9^2 + 9^2 + 9^2 + 9^2 + 9^2 + 9^2
561 = 3^2 + 6^2 + 8^2 + 8^2 + 8^2 + 9^2 + 9^2 + 9^2 + 9^2
561 = 3^2 + 7^2 + 7^2 + 7^2 + 9^2 + 9^2 + 9^2 + 9^2 + 9^2
561 = 5^2 + 5^2 + 5^2 + 9^2 + 9^2 + 9^2 + 9^2 + 9^2 + 9^2
561 = 7^2 + 8^2 + 8^2 + 8^2 + 8^2 + 8^2 + 8^2 + 8^2 + 8^2
The last sum here does not include 9^2, so a(10) >= 561. In fact, a(10) = 561, as every number larger than 561 has 9^2 in every shortest decomposition of this form.
A377083
Number of iterations required for elated number A376272(n) to converge to 1.
Original entry on oeis.org
0, 1, 2, 2, 2, 3, 4, 7, 4, 9, 5, 1, 2, 4, 3, 2, 3, 4, 4, 2, 2, 5, 4, 3, 5, 3, 4, 5, 4, 3, 3, 3, 3, 5, 2, 2, 4, 4, 3, 3, 3, 3, 3, 3, 7, 9, 7, 4, 5, 9, 5, 6, 4, 6, 9, 4, 7, 10, 5, 5, 8, 10, 8, 6, 8, 8, 7, 10, 6, 4, 5, 6, 7, 6, 2, 5, 7, 2, 7, 4, 7, 9, 5, 9, 5, 5
Offset: 1
N. Bradley Fox, Nathan Fox, Helen Grundman, Rachel Lynn, Changningphaabi Namoijam, Mary Vanderschoot, Oct 15 2024
21 is the 4th elated number and iterating the map A376270 yields 10 then 1, so a(4)=2.
A090425 is the analog for happy numbers, with a different convention used.
-
from itertools import count, islice
def f(n): return (d:=list(map(int, str(n))))[0] * sum(di*di for di in d)
def ok_count(n):
if n == 1: return True, 0
traj, c = {n}, 0
while (n:=f(n)) not in traj: traj.add(n); c += 1
return 1 in traj, c
def agen(): # generator of terms
for n in count(1):
elated, iterations = ok_count(n)
if elated: yield iterations
print(list(islice(agen(), 90))) # Michael S. Branicky, Oct 16 2024
A377082
a(0) = 1, a(1) = 3, a(2) = 13; for n >= 2, a(n+1) = 2*3^((a(n)-1)/4) - 1.
Original entry on oeis.org
1, 3, 13, 53, 3188645
Offset: 0
N. Bradley Fox, Nathan Fox, Helen Grundman, Rachel Lynn, Changningphaabi Namoijam, Mary Vanderschoot, Oct 15 2024
A373239
Relative of Hofstadter Q-sequence: a(n) = max(0, n+118) for n <= 0; a(n) = a(n-a(n-1)) + a(n-a(n-2)) + a(n-a(n-3)) for n > 0.
Original entry on oeis.org
6, 119, 120, 121, 9, 122, 123, 124, 12, 125, 126, 127, 15, 128, 129, 17, 131, 18, 131, 133, 134, 22, 21, 247, 241, 9, 18, 256, 259, 127, 22, 148, 153, 131, 27, 36, 155, 246, 122, 39, 156, 162, 126, 42, 158, 165, 16, 157, 165, 145, 40, 157, 55, 260, 134, 46, 167, 178, 25, 38, 58, 523, 250, 122, 61, 71, 299, 238, 116, 72, 190, 192
Offset: 1
Comments