cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A065918 Decimal expansion of log(2 + sqrt(3)).

Original entry on oeis.org

1, 3, 1, 6, 9, 5, 7, 8, 9, 6, 9, 2, 4, 8, 1, 6, 7, 0, 8, 6, 2, 5, 0, 4, 6, 3, 4, 7, 3, 0, 7, 9, 6, 8, 4, 4, 4, 0, 2, 6, 9, 8, 1, 9, 7, 1, 4, 6, 7, 5, 1, 6, 4, 7, 9, 7, 6, 8, 4, 7, 2, 2, 5, 6, 9, 2, 0, 4, 6, 0, 1, 8, 5, 4, 1, 6, 4, 4, 3, 9, 7, 6, 0, 7, 4, 2, 1, 9, 0, 1, 3, 4, 5, 0, 1, 0, 1, 7, 8, 3, 5, 5
Offset: 1

Views

Author

Frank Ellermann, Dec 08 2001

Keywords

Comments

x = 2^n - 1 is prime if and only if x divides cosh(2^(n - 2)*log(2 + sqrt(3))).

Examples

			1.316957896924816708625046347307968444...
		

Crossrefs

Programs

  • Mathematica
    First@ RealDigits[Log[2 + Sqrt@ 3], 10, 102] (* Michael De Vlieger, May 12 2019 *)
  • PARI
    default(realprecision, 2080); x=log(2 + sqrt(3)); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065918.txt", n, " ", d)) \\ Harry J. Smith, Nov 04 2009
    
  • PARI
    acosh(2) \\ Charles R Greathouse IV, Jan 07 2016

Formula

Equals arccosh(2) since arccosh(x) = log(x + sqrt(x^2 - 1)). - Stanislav Sykora, Nov 01 2013
Equals arctanh(sqrt(3)/2). - Amiram Eldar, Feb 09 2024
Equals log(4) - Sum_{k>=1} (2*k - 1)!!/(k*k!*2^(3*k + 1)). - Antonio GraciĆ” Llorente, Feb 14 2024
Equals Sum_{n>=0} ((-1)^(n)*binomial(2*n, n))/(2^(3*n - 1/2)*(2*n + 1)). - Antonio GraciĆ” Llorente, Nov 13 2024

A072876 a(1) = a(2) = a(3) = a(4) = 1 and a(n) = (a(n-1)*a(n-3) + a(n-2)^3)/a(n-4) for n >= 5.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 11, 49, 739, 41926, 36876163, 1504578225617, 67856786028033600651, 81238311359334144709516343054051, 8472940010945536421401513734595877223414710434640386
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002

Keywords

Comments

A variation of a Somos-4 sequence with a(n-2)^3 in place of a(n-2)^2.

Crossrefs

Programs

  • Mathematica
    Nest[Append[#, (#[[-1]]*#[[-3]] + #[[-2]]^3)/#[[-4]] ] &, {1, 1, 1, 1}, 11] (* Michael De Vlieger, May 12 2019 *)
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[n]==(a[n-1]a[n-3]+a[n-2]^3)/ a[n-4]},a,{n,20}] (* Harvey P. Dale, May 15 2019 *)

Formula

Lim_{n->infinity} (log(log a(n)))/n = log((1+sqrt(5))/2) or about 0.48. See A002390. However, convergence is extremely slow. - Andrew Hone, Nov 15 2005
From Jon E. Schoenfield, May 12 2019: (Start)
It appears that, for n >= 1,
a(n) = ceiling(e^(c0*phi^n + d0/phi^n)) if n is even,
ceiling(e^(c1*phi^n + d1/phi^n)) if n is odd,
where
phi = (1 + sqrt(5))/2,
c0 = 0.087172479898911051233710515749226588954735607680...
c1 = 0.087662681482404614007222542134598226046349621976...
d0 = -9.574280373370101810186207466479291633433387765559...
d1 = -4.425515288739040257644546086989175506652492968654...
(End)

A111459 Generalized Somos-4 sequence with a(n-2)^2 replaced by a(n-2)^5.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 35, 313, 26261407, 1001689887346, 356879751557595054813966522072161803, 3221974575788016845202611315068840860244866942009716269469
Offset: 0

Views

Author

Andrew Hone, Nov 15 2005

Keywords

Crossrefs

Programs

  • Maple
    L[0]:=0; L[1]:=0; L[2]:=0; L[3]:=0; for n from 0 to 4000 do L[n+4]:=evalf(ln(1+exp(L[n+3]+L[n+1]-5*L[n+2]))+5*L[n+2]-L[n]): od: for n from 3990 to 4000 do print(evalf(ln(L[n+4])/(n+4))): od: #Note: this calculates L[n]=ln(a[n]) and illustrates slow convergence of ln(ln(a[n]))/n to 0.783...

Formula

a(n) = (a(n-1)*a(n-3) + a(n-2)^5)/a(n-4) for n >= 4 with a(0) = a(1) = a(2) = a(3) = 1. As n tends to infinity, log(log(a(n)))/n tends to (1/2)*log((5 + sqrt(21))/2) or about 0.783.

A217787 a(n) = (a(n-1)*a(n-3) + 1) / a(n-4) with a(0) = a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 9, 14, 19, 43, 67, 91, 206, 321, 436, 987, 1538, 2089, 4729, 7369, 10009, 22658, 35307, 47956, 108561, 169166, 229771, 520147, 810523, 1100899, 2492174, 3883449, 5274724, 11940723, 18606722, 25272721, 57211441, 89150161, 121088881
Offset: 0

Views

Author

Michael Somos, Mar 25 2013

Keywords

Comments

This sequence is similar to A005246 whose recursion is a(n) = (a(n-1)*a(n-2) + 1) / a(n-3). - Michael Somos, Feb 10 2017

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 9*x^7 + 14*x^8 + 19*x^9 + ...
		

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else (Self(n)*Self(n-2)+1)/Self(n-3): n in [0..40]]; // Bruno Berselli, Mar 25 2013
  • Mathematica
    a[ n_] := With[{m = If [n < 0, 3 - n, n]}, SeriesCoefficient[ (1 + x + x^2 - 4 x^3 - 3 x^4 - 2 x^5) / (1 - 5 x^3 + x^6), {x, 0, m}]]; (* Michael Somos, Jan 18 2015 *)
    LinearRecurrence[{0,0,5,0,0,-1},{1,1,1,1,2,3},40] (* Harvey P. Dale, Nov 20 2016 *)
  • PARI
    {a(n) = if( n<0, n = 3-n); polcoeff( (1 + x + x^2 - 4*x^3 - 3*x^4 - 2*x^5) / (1 - 5*x^3 + x^6) + x * O(x^n), n)};
    

Formula

G.f.: (1 + x + x^2 - 4*x^3 - 3*x^4 - 2*x^5) / (1 - 5*x^3 + x^6).
a(n) = a(3-n) for all n in Z.
a(n+3) + a(n-3) = 5*a(n) for all n in Z.
a(n+1) + a(n-1) = a(n) * (2 + [n mod 3 == 0]) for all n in Z.
a(n+3k)+a(n-3k) = A003501(k)*a(n) for n>=3k. - Bruno Berselli, Mar 25 2013
Showing 1-4 of 4 results.