cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A111459 Generalized Somos-4 sequence with a(n-2)^2 replaced by a(n-2)^5.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 35, 313, 26261407, 1001689887346, 356879751557595054813966522072161803, 3221974575788016845202611315068840860244866942009716269469
Offset: 0

Views

Author

Andrew Hone, Nov 15 2005

Keywords

Crossrefs

Programs

  • Maple
    L[0]:=0; L[1]:=0; L[2]:=0; L[3]:=0; for n from 0 to 4000 do L[n+4]:=evalf(ln(1+exp(L[n+3]+L[n+1]-5*L[n+2]))+5*L[n+2]-L[n]): od: for n from 3990 to 4000 do print(evalf(ln(L[n+4])/(n+4))): od: #Note: this calculates L[n]=ln(a[n]) and illustrates slow convergence of ln(ln(a[n]))/n to 0.783...

Formula

a(n) = (a(n-1)*a(n-3) + a(n-2)^5)/a(n-4) for n >= 4 with a(0) = a(1) = a(2) = a(3) = 1. As n tends to infinity, log(log(a(n)))/n tends to (1/2)*log((5 + sqrt(21))/2) or about 0.783.

A217787 a(n) = (a(n-1)*a(n-3) + 1) / a(n-4) with a(0) = a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 9, 14, 19, 43, 67, 91, 206, 321, 436, 987, 1538, 2089, 4729, 7369, 10009, 22658, 35307, 47956, 108561, 169166, 229771, 520147, 810523, 1100899, 2492174, 3883449, 5274724, 11940723, 18606722, 25272721, 57211441, 89150161, 121088881
Offset: 0

Views

Author

Michael Somos, Mar 25 2013

Keywords

Comments

This sequence is similar to A005246 whose recursion is a(n) = (a(n-1)*a(n-2) + 1) / a(n-3). - Michael Somos, Feb 10 2017

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 9*x^7 + 14*x^8 + 19*x^9 + ...
		

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else (Self(n)*Self(n-2)+1)/Self(n-3): n in [0..40]]; // Bruno Berselli, Mar 25 2013
  • Mathematica
    a[ n_] := With[{m = If [n < 0, 3 - n, n]}, SeriesCoefficient[ (1 + x + x^2 - 4 x^3 - 3 x^4 - 2 x^5) / (1 - 5 x^3 + x^6), {x, 0, m}]]; (* Michael Somos, Jan 18 2015 *)
    LinearRecurrence[{0,0,5,0,0,-1},{1,1,1,1,2,3},40] (* Harvey P. Dale, Nov 20 2016 *)
  • PARI
    {a(n) = if( n<0, n = 3-n); polcoeff( (1 + x + x^2 - 4*x^3 - 3*x^4 - 2*x^5) / (1 - 5*x^3 + x^6) + x * O(x^n), n)};
    

Formula

G.f.: (1 + x + x^2 - 4*x^3 - 3*x^4 - 2*x^5) / (1 - 5*x^3 + x^6).
a(n) = a(3-n) for all n in Z.
a(n+3) + a(n-3) = 5*a(n) for all n in Z.
a(n+1) + a(n-1) = a(n) * (2 + [n mod 3 == 0]) for all n in Z.
a(n+3k)+a(n-3k) = A003501(k)*a(n) for n>=3k. - Bruno Berselli, Mar 25 2013
Showing 1-2 of 2 results.