cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Santi Spadaro

Santi Spadaro's wiki page.

Santi Spadaro has authored 28 sequences. Here are the ten most recent ones:

A093567 Binomial (Binomial (n,2), 3) - Binomial (Binomial (n,3), 2).

Original entry on oeis.org

0, 1, 14, 75, 265, 735, 1736, 3654, 7050, 12705, 21670, 35321, 55419, 84175, 124320, 179180, 252756, 349809, 475950, 637735, 842765, 1099791, 1418824, 1811250, 2289950, 2869425, 3565926, 4397589, 5384575, 6549215, 7916160, 9512536
Offset: 2

Author

Keywords

Comments

All terms are positive: A093566 >= A054563 ==> C( C(n,2), 3) >= C( C(n,3), 2) ==> n^2*(n^4 + 3n^3 -35n^2 + 69n -38)/144 >= 0 ==> (n - 2)(n - 1)(n^2 + 6n - 19) ==> 0 which it is for all n >= 2.

Crossrefs

Programs

  • Maple
    A093567:=n->binomial(binomial(n, 2), 3) - binomial(binomial(n, 3), 2); seq(A093567(n), n=2..30); # Wesley Ivan Hurt, Feb 02 2014
  • Mathematica
    Table[ Binomial[ Binomial[n, 2], 3] - Binomial[ Binomial[n, 3], 2], {n, 2, 34}]
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,14,75,265,735,1736},40] (* Harvey P. Dale, Jun 12 2016 *)
  • PARI
    a(n) = binomial(binomial(n,2), 3) - binomial(binomial(n,3), 2); \\ Michel Marcus, Oct 01 2017

Formula

a(n) = A093566(n) - A054563(n).
G.f.: x^3*(-1-7*x+2*x^2+x^3)/(x-1)^7. - R. J. Mathar, Dec 08 2010

A093566 a(n) = n*(n-1)*(n-2)*(n-3)*(n^2-3*n-2)/48.

Original entry on oeis.org

0, 0, 0, 0, 1, 20, 120, 455, 1330, 3276, 7140, 14190, 26235, 45760, 76076, 121485, 187460, 280840, 410040, 585276, 818805, 1125180, 1521520, 2027795, 2667126, 3466100, 4455100, 5668650, 7145775, 8930376, 11071620, 13624345, 16649480, 20214480
Offset: 0

Author

Keywords

Comments

a(n+1) is the number of chiral pairs of colorings of the faces of a cube (vertices of a regular octahedron) using n or fewer colors. - Robert A. Russell, Sep 28 2020

Examples

			For a(3+1) = 1, each of the three colors is applied to a pair of adjacent faces of the cube (vertices of the octahedron). - _Robert A. Russell_, Sep 28 2020
		

Crossrefs

From Robert A. Russell, Sep 28 2020: (Start)
Cf. A047780 (oriented), A198833 (unoriented), A337898 (achiral) colorings.
a(n+1) = A325006(3,n) (chiral pairs of colorings of orthotope facets or orthoplex vertices).
a(n+1) = A337889(3,n) (chiral pairs of colorings of orthotope faces or orthoplex peaks).
Other polyhedra: A000332 (tetrahedron), A337896 (cube/octahedron).
(End)

Programs

  • Mathematica
    Table[ Binomial[ Binomial[n-1, 2], 3], {n,0,32}]
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,1,20,120},40] (* Harvey P. Dale, Feb 18 2016 *)
  • PARI
    a(n)=n*(n-1)*(n-2)*(n-3)*(n^2-3*n-2)/48 \\ Charles R Greathouse IV, Jun 11 2015
  • Sage
    [(binomial(binomial(n,2),3)) for n in range(-1, 33)] # Zerinvary Lajos, Nov 30 2009
    

Formula

a(n) = binomial(binomial(n-1, 2), 3).
G.f.: -x^4*(1+13*x+x^2)/(x-1)^7. - R. J. Mathar, Dec 08 2010
a(n+1) = 1*C(n,3) + 16*C(n,4) + 30*C(n,5) + 15*C(n,6), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors. - Robert A. Russell, Sep 28 2020
a(n) = A000217(n-1)*A239352(n-2)/6. - R. J. Mathar, Mar 25 2022

Extensions

Edited (with a new definition) by N. J. A. Sloane, Jul 02 2008

A064779 Primes such that the sum of their digits and the sum of the reciprocals of their digits is also prime.

Original entry on oeis.org

11, 2441, 4241, 4421, 12163, 12613, 13313, 13331, 16231, 16363, 16633, 21163, 21613, 26113, 31663, 32233, 32323, 32611, 33113, 33223, 33311, 48281, 48821, 61231, 61363, 62131, 62311, 63211, 63361, 88241
Offset: 1

Author

Santi Spadaro, Oct 19 2001

Keywords

Comments

Zero, five, and seven never appear as a digit of any of the terms of this sequence. - Harvey P. Dale, Jul 17 2013

Crossrefs

Cf. A034708.

Programs

  • Mathematica
    f[ n_ ] := 1/n a[ n_ ] := Apply[ Plus, Map[ f, IntegerDigits[ n ] ] ] b[ n_ ] := Apply[ Plus, IntegerDigits[ n ] ] Select[ Range[ 100000 ], FreeQ[ IntegerDigits[ # ], 0 ] && PrimeQ[ a[ # ] ] && PrimeQ[ b[ # ] ] && PrimeQ[ # ] & ]
    sdpQ[n_]:=Module[{idn=IntegerDigits[n]},Min[idn]>0&&And@@PrimeQ[{Total[ idn], Total[ 1/idn]}]]; Select[Prime[Range[10000]],sdpQ] (* Harvey P. Dale, Jul 17 2013 *)

A065438 Complement of A065039.

Original entry on oeis.org

10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 220, 221, 232, 243, 254, 265, 276, 287, 298, 309, 320, 331, 332, 343, 354, 365, 376, 387, 398, 409, 420, 431, 442, 443, 454, 465, 476, 487, 498, 509, 520, 531, 542
Offset: 1

Author

Santi Spadaro, Nov 17 2001

Keywords

A071063 Determinant of n X n matrix defined by m(i,j) = 0 if i+j is a prime, m(i,j) = 1 otherwise.

Original entry on oeis.org

0, 0, -1, 0, 1, 0, -9, -8, 0, 0, 0, 0, 0, 0, 0, -8, 9, 14, -71, -310, 281, 2000, -8004, -9200, 8836, 720, -409, -2710, 67766, 110501, -1117396, -4130160, 381136, 91920, -111376, -36080, 144420, 555581, -311814, -1831958, 1876689, -1648, -3584425, 4768308, 1971637204, 53664688220
Offset: 1

Author

Santi Spadaro, May 26 2002

Keywords

Comments

Let h(i,j) be the matrix defined in A069191, then a(n)=((-1)^n)*Det(h(i,j)-J), where J is the n X n matrix with only 1's as its elements.

Crossrefs

Cf. A069191.

Programs

  • Mathematica
    a[n_] := Det[Table[If[PrimeQ[i + j], 0, 1], {i, 1, n}, {j, 1, n}]] Table[a[n], {n, 1, 50}]

A071292 Call f(n) the sum of the first n primes then a(n) is the number of squares between f(n) and f(n+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2
Offset: 1

Author

Santi Spadaro, Jun 11 2002

Keywords

Comments

a(n)>=1.

Programs

  • Mathematica
    squareQ[n_] := IntegerQ[Sqrt[n]] f[n_] := Sum[Prime[i], {i, 1, n}] a[n_] := Length[Select[Table[i, {i, a[n], a[n + 1]}], squareQ]]

A064704 Numbers beginning and ending with their multiplicative digital root.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 88, 111, 232, 535, 575, 646, 686, 818, 838, 1111, 2132, 2312, 2472, 2692, 2742, 2962, 5135, 5175, 5315, 5715, 5795, 5975, 6146, 6186, 6226, 6246, 6416, 6426, 6696, 6776, 6816, 6966, 8118, 8138, 8278, 8318, 8728, 11111
Offset: 1

Author

Santi Spadaro, Oct 13 2001

Keywords

Comments

If NA(1)A(2)...A(j)N is MDR strong then also Na(1)a(2)...a(j)N is MDR strong where a(1)a(2)...a(j) is any permutation of A(1)A(2)...A(j) and if any of A(1),A(2),...,A(j) say A(1) is composite then also NB(1)...B(k)A(2)...A(j) is MDR strong where A(1)=B(1)*B(2)*...*B(k), so MDR strong numbers with greater number of digits are likely to be more frequent.

Crossrefs

Cf. A031347.

Programs

  • Mathematica
    dr[n_]:=NestWhile[Times@@IntegerDigits[#]&,n,#>9&];bemdrQ[n_]:=Module[ {idn=IntegerDigits[n]},First[idn]==Last[idn]==dr[n]]; Select[Range[ 12000], bemdrQ] (* Harvey P. Dale, Oct 21 2011 *)

A065031 In the decimal expansion of n, replace each odd digit with 1 and each even digit with 2.

Original entry on oeis.org

2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 12, 11, 12, 11, 12, 11, 12, 11, 12, 11, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 12, 11, 12, 11, 12, 11, 12, 11, 12, 11, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 12, 11, 12, 11, 12, 11, 12, 11, 12, 11, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21
Offset: 0

Author

Santi Spadaro, Nov 03 2001

Keywords

Comments

A196563(a(n)) = A196563(n); A196564(a(n)) = A196564(n).

Examples

			a(123)=121 because 1 and 3 are odd and 2 is even.
		

Programs

  • Haskell
    a065031 n = f n  where
       f x | x < 10    = 2 - x `mod` 2
           | otherwise = 10 * (f x') + 2 - m `mod` 2
           where (x',m) = divMod x 10
    -- Reinhard Zumkeller, Feb 22 2012
  • Mathematica
    Table[FromDigits[If[OddQ[#],1,2]&/@IntegerDigits[n]],{n,0,120}] (* Harvey P. Dale, Jun 08 2014 *)

A071906 Sum of digits of 2^n (mod 2).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1
Offset: 0

Author

Santi Spadaro, Jun 13 2002

Keywords

Crossrefs

Cf. A001370.

Programs

  • Mathematica
    f[n_] := Mod[Plus @@ IntegerDigits[2^n], 2]; Table[ f@n, {n, 0, 104}] (* Robert G. Wilson v, May 04 2009 *)
  • PARI
    a(n) = sumdigits(2^n) % 2; \\ Michel Marcus, Apr 20 2017

A069879 Number of pairs {i,j} with i different from j; 1<=i<=n; 1<= j <=n such that i+j is a prime number.

Original entry on oeis.org

0, 2, 4, 8, 10, 14, 18, 22, 28, 36, 42, 50, 56, 62, 70, 80, 88, 96, 104, 112, 122, 134, 144, 156, 168, 180, 194, 208, 220, 234, 248, 262, 276, 292, 308, 326, 344, 362, 380, 400, 418, 438, 456, 474, 494, 514, 532, 550, 570, 590, 612, 636, 658, 682, 708, 734
Offset: 1

Author

Santi Spadaro, May 04 2002

Keywords

Crossrefs

Partial sums of 2*A060715(n).

Programs

Formula

a(n) = 2 * A071917(n). - Alois P. Heinz, Sep 29 2017