cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A292918 Let A_n be a square n X n matrix with entries A_n(i,j)=1 if i+j is prime, and A_n(i,j)=0 otherwise. Then a(n) counts the 1's in A_n.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 19, 23, 29, 37, 43, 51, 57, 63, 71, 81, 89, 97, 105, 113, 123, 135, 145, 157, 169, 181, 195, 209, 221, 235, 249, 263, 277, 293, 309, 327, 345, 363, 381, 401, 419, 439, 457, 475, 495, 515, 533, 551, 571, 591, 613, 637, 659, 683, 709, 735
Offset: 1

Views

Author

Anthony Hernandez, Sep 26 2017

Keywords

Comments

Bertrand's postulate guarantees for every integer n the existence of at least one prime q with n < q < 2n. Equivalently, A(n) has at least one skew diagonal below the main skew diagonal whose entries will be equal to 1.

Examples

			         |1 1 0 1 0|
         |1 0 1 0 1|
   A_5 = |0 1 0 1 0| and so a(5) = 11.
         |1 0 1 0 0|
         |0 1 0 0 0|
		

Crossrefs

Programs

  • Magma
    sol:=[]; for n in [1..56] do k:=0; for i,j in [1..n] do if IsPrime(i+j) then k:=k+1; end if; end for; Append(~sol,k);end for; sol; // Marius A. Burtea, Aug 29 2019
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=1, 1,
          a(n-1)+2*(pi(2*n-1)-pi(n)))
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 29 2017
  • Mathematica
    A[n_] := Table[Boole[PrimeQ[i + j]], {i, 1, n}, {j, 1, n}]; a[n_] := Count[Flatten[A[n]], 1];
    (* or, after Alois P. Heinz (200 times faster): *)
    a[1] = 1; a[n_] := a[n] = a[n-1] + 2(PrimePi[2n-1] - PrimePi[n]);
    Array[a, 80] (* Jean-François Alcover, Sep 29 2017 *)
  • PARI
    first(n) = {my(res = vector(n), pn = 0, p2n1 = 1); res[1] = 1; for(i = 2, n,
    if(isprime(i), pn++); if(isprime(2*i-1), p2n1++); res[i] = res[i-1] + 2*(p2n1 - pn)); res} \\ David A. Corneth, Aug 31 2019
  • Python
    from sympy import primepi
    from sympy.core.cache import cacheit
    @cacheit
    def a(n): return 1 if n==1 else a(n - 1) + 2*(primepi(2*n - 1) - primepi(n))
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Dec 13 2017, after Alois P. Heinz
    

Formula

From Alois P. Heinz, Sep 29 2017: (Start)
a(n) = a(n-1) + 2 * (pi(2*n-1) - pi(n)) for n > 1, a(1) = 1.
a(n) = A069879(n) + 1 = 2*A071917(n) + 1. (End)
a(n) = Sum_{i=1..n} (pi(n+i) - pi(i)), where pi = A000720. - Ridouane Oudra, Aug 29 2019
a(n) = Sum_{p <= 2n+1, p prime} min(p-1, 2n+1-p). - Ridouane Oudra, Oct 30 2023
Showing 1-1 of 1 results.