A323552 Denominators of the partial Euler product representation of Pi/4.
4, 16, 128, 512, 6144, 98304, 393216, 9437184, 37748736, 1207959552, 43486543872, 1739461754880, 6957847019520, 333976656936960, 1335906627747840, 80154397664870400, 4809263859892224000, 19237055439568896000, 1385067991648960512000, 99724895398725156864000
Offset: 1
Examples
a(3) = 128 = denominator((3/4) * (5/4) * (7/8)).
Links
- N. Elkies, Introduction to Analytic Number Theory: Primes in Arithmetic Progression, Dirichlet Characters and L-Functions
- Leonhard Euler, On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
- Wikipedia, Superparticular ratio
- Wikipedia, Wallis Product
- Wikipedia, Gregory Series
- Wikipedia, Madhava Series
- Wikipedia, Machin-like Formula
- Wikipedia, Inverse Trigonometric Functions
Crossrefs
Programs
-
PARI
a(n) = denominator(prod(k=2, n+1, my(p=prime(k)); if(p%4==1, p/(p-1), p/(p+1)))); \\ Daniel Suteu, Jan 22 2019
Extensions
More terms from Daniel Suteu, Jan 22 2019
Comments