A323551 Numerators of the partial Euler product representation of Pi/4.
3, 15, 105, 385, 5005, 85085, 323323, 7436429, 30808063, 955049953, 35336848261, 1448810778701, 5663533044013, 266186053068611, 1085220062510491, 64027983688118969, 3905707004975257109, 15393080549020130959, 1092908718980429298089, 79782336485571338760497
Offset: 1
Examples
a(3) = 105 = numerator((3/4) * (5/4) * (7/8)).
Links
- N. Elkies, Introduction to Analytic Number Theory: Primes in Arithmetic Progression, Dirichlet Characters and L-Functions
- Leonhard Euler, On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
- Wikipedia, Superparticular ratio
- Wikipedia, Wallis Product
- Wikipedia, Gregory Series
- Wikipedia, Madhava Series
- Wikipedia, Machin-like Formula
- Wikipedia, Inverse Trigonometric Functions
Crossrefs
Cf. A003881 (Decimal expansion of Pi/4).
Cf. A101455 (Dirichlet L-series of The Non-Principal Dirichlet Characters Mod 4).
Cf. A323552 (Denominators of the Partial Euler Product Representation of Pi/4).
Cf. A236436 (Denominators of the Product (1 + 1/p), where p is prime).
Cf. A002144 (Primes of the form 4n+1; Pythagorean primes).
Cf. A002145 (Primes of the form 4n+3).
Programs
-
PARI
a(n) = numerator(prod(k=2, n+1, my(p=prime(k)); if(p%4==1, p/(p-1), p/(p+1)))); \\ Daniel Suteu, Jan 22 2019
Extensions
More terms from Daniel Suteu, Jan 22 2019
Comments