cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A276305 Primes p such that d(p*(2p+1)) = 12 where d(n) is the number of divisors of n (A000005).

Original entry on oeis.org

31, 37, 73, 103, 137, 139, 181, 193, 211, 269, 373, 433, 463, 541, 563, 571, 587, 733, 751, 859, 887, 929, 1021, 1129, 1151, 1381, 1399, 1489, 1637, 1723, 1993, 2053, 2083, 2087, 2237, 2521, 2621, 2731, 2837, 2843, 2909, 3109, 3137, 3209, 3271, 3313, 3323, 3343, 3541, 4091
Offset: 1

Views

Author

Anthony Hernandez, Aug 29 2016

Keywords

Comments

Conjecture: this sequence is infinite.
Each number p * (2p + 1) is of the form p * q * r^2 but not of the form p * q^5. - David A. Corneth, Aug 30 2016

Examples

			Consider 31. Then 31*((2*31)+1) = 2*(31^2) + 31 = 1953 = 3*3*7*31 and d(1953) = 12.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..5000] | NumberOfDivisors(2*n+1) eq 6 and IsPrime(n)]; // Vincenzo Librandi, Aug 30 2016
  • Mathematica
    Select[Prime@ Range@ 576, DivisorSigma[0, # (2 # + 1)] == 12 &] (* Michael De Vlieger, Aug 30 2016 *)
  • PARI
    is(n) = ispseudoprime(n) && numdiv(n*(2*n+1))==12 \\ Felix Fröhlich, Aug 29 2016
    
  • PARI
    is(n)=numdiv(2*n+1)==6 && isprime(n) \\ Charles R Greathouse IV, Aug 29 2016
    

Extensions

More terms from Antti Karttunen, Aug 29 2016

A276307 Primes p such that d(p*(2p+1)) = 16 where d(n) is the number of divisors of n (A000005).

Original entry on oeis.org

67, 97, 127, 199, 227, 229, 241, 277, 307, 313, 331, 379, 397, 457, 467, 499, 547, 617, 619, 647, 709, 727, 739, 757, 773, 797, 823, 829, 857, 883, 977, 1033, 1069, 1093, 1117, 1123, 1171, 1187, 1193, 1201, 1277, 1297, 1303, 1319, 1423, 1447, 1459, 1471, 1483, 1609
Offset: 1

Views

Author

Anthony Hernandez, Aug 29 2016

Keywords

Comments

Conjecture: this sequence is infinite.
Or, primes p such that d(2p+1)=8. - Zak Seidov, Sep 07 2016

Examples

			Consider 67. Then 67*(2*67+1) = 9045 and d(9045) = 16.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..2000] | NumberOfDivisors(2*n+1) eq 8 and IsPrime(n)]; // Vincenzo Librandi, Aug 30 2016
  • Mathematica
    Select[Prime@ Range@ 256, DivisorSigma[0, # (2 # + 1)] == 16 &] (* Michael De Vlieger, Aug 30 2016 *)
  • PARI
    lista(nn) = forprime (p=2, nn, if (numdiv(p*(2*p+1)) == 16, print1(p, ", "))); \\ Michel Marcus, Aug 29 2016
    
  • PARI
    is(n)=numdiv(2*n+1)==8 && isprime(n) \\ Charles R Greathouse IV, Aug 29 2016
    

Extensions

Corrected and extended by Michel Marcus, Aug 29 2016
Showing 1-2 of 2 results.