cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A047780 Number of inequivalent ways to color faces of a cube using at most n colors.

Original entry on oeis.org

0, 1, 10, 57, 240, 800, 2226, 5390, 11712, 23355, 43450, 76351, 127920, 205842, 319970, 482700, 709376, 1018725, 1433322, 1980085, 2690800, 3602676, 4758930, 6209402, 8011200, 10229375, 12937626, 16219035, 20166832, 24885190, 30490050
Offset: 0

Views

Author

Keywords

Comments

Here inequivalent means under the action of the rotation group of the cube, of order 24, which in its action on the faces has cycle index (x1^6 + 3*x1^2*x2^2 + 6*x1^2*x4 + 6*x2^3 + 8*x3^2)/24.
a(n) is also the number of inequivalent colorings of the vertices of a regular octahedron using at most n colors. - José H. Nieto S., Jan 19 2012
From Robert A. Russell, Oct 08 2020: (Start)
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular octahedron and cube are {3,4} and {4,3} respectively. They are mutually dual.
There are 24 elements in the rotation group of the regular octahedron/cube. They divide into five conjugacy classes. The first formula is obtained by averaging the cube face (octahedron vertex) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Even Cycle Indices
Identity 1 x_1^6
Vertex rotation 8 x_3^2
Edge rotation 6 x_2^3
Small face rotation 6 x_1^2x_4^1
Large face rotation 3 x_1^2x_2^2 (End)

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 254 (corrected).
  • N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see p. 147).
  • M. Gardner, New Mathematical Diversions from Scientific American. Simon and Schuster, NY, 1966, p. 246 (the formula given is incorrect but was corrected in the second printing).
  • J.-P. Delahaye, 'Le miraculeux "lemme de Burnside"','Le coloriage du cube' p. 147 in 'Pour la Science' (French edition of 'Scientific American') No.350 December 2006 Paris.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A198833 (unoriented), A093566(n+1) (chiral), A337898 (achiral).
Other elements: A060530 (edges), A000543 (cube vertices, octahedron faces).
Cf. A006008 (tetrahedron), A000545 (dodecahedron faces, icosahedron vertices), A054472 (icosahedron faces, dodecahedron vertices).
Row 3 of A325004 (orthoplex vertices, orthotope facets) and A337887 (orthotope faces, orthoplex peaks).

Programs

  • Magma
    [(n^6 + 3*n^4 + 12*n^3 + 8*n^2)/24: n in [1..30]]; // Vincenzo Librandi, Apr 27 2012
  • Mathematica
    CoefficientList[Series[x*(1+3*x+8*x^2+16*x^3+2*x^4)/(1-x)^7,{x,0,33}],x] (* Vincenzo Librandi, Apr 27 2012 *)

Formula

a(n) = (n^6 + 3*n^4 + 12*n^3 + 8*n^2)/24 = n+8*C(n, 2)+30*C(n, 3)+68*C(n, 4)+75*C(n, 5)+30*C(n, 6). Each term of the RHS indicates the number of ways to use n colors to color the cube faces (octahedron vertices) with exactly 1, 2, 3, 4, 5, or 6 colors.
G.f.: x*(1+3*x+8*x^2+16*x^3+2*x^4)/(1-x)^7. - Colin Barker, Jan 29 2012
a(n) = A198833(n) + A093566(n+1) = 2*A198833(n) - A337898(n) = 2*A093566(n+1) + A337898(n). - Robert A. Russell, Oct 08 2020

Extensions

Corrected version of A006550 and A006529.
Entry revised by N. J. A. Sloane, Jan 03 2005

A325006 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthotope using up to k colors.

Original entry on oeis.org

0, 1, 0, 3, 0, 0, 6, 3, 0, 0, 10, 15, 1, 0, 0, 15, 45, 20, 0, 0, 0, 21, 105, 120, 15, 0, 0, 0, 28, 210, 455, 210, 6, 0, 0, 0, 36, 378, 1330, 1365, 252, 1, 0, 0, 0, 45, 630, 3276, 5985, 3003, 210, 0, 0, 0, 0, 55, 990, 7140, 20475, 20349, 5005, 120, 0, 0, 0, 0, 66, 1485, 14190, 58905, 98280, 54264, 6435, 45, 0, 0, 0, 0
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. The chiral colorings of its facets come in pairs, each the reflection of the other.
Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthoplex using up to k colors.

Examples

			Array begins with A(1,1):
0 1 3  6  10   15     21       28        36         45          55 ...
0 0 3 15  45  105    210      378       630        990        1485 ...
0 0 1 20 120  455   1330     3276      7140      14190       26235 ...
0 0 0 15 210 1365   5985    20475     58905     148995      341055 ...
0 0 0  6 252 3003  20349    98280    376992    1221759     3478761 ...
0 0 0  1 210 5005  54264   376740   1947792    8145060    28989675 ...
0 0 0  0 120 6435 116280  1184040   8347680   45379620   202927725 ...
0 0 0  0  45 6435 203490  3108105  30260340  215553195  1217566350 ...
0 0 0  0  10 5005 293930  6906900  94143280  886163135  6358402050 ...
0 0 0  0   1 3003 352716 13123110 254186856 3190187286 29248649430 ...
For a(2,3)=3, each chiral pair consists of two adjacent edges of the square with one of the three colors.
		

Crossrefs

Cf. A325004 (oriented), A325005 (unoriented), A325007 (achiral), A325010 (exactly k colors)
Other n-dimensional polytopes: A007318(k,n+1) (simplex), A325014 (orthoplex)
Rows 1-3 are A161680, A050534, A093566(n+1), A234249(n-1)

Programs

  • Mathematica
    Table[Binomial[Binomial[d-n+1,2],n],{d,1,12},{n,1,d}] // Flatten
  • PARI
    a(n, k) = binomial(binomial(k, 2), n)
    array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print(""))
    /* Print initial 10 rows and 11 columns of array as follows: */
    array(10, 11) \\ Felix Fröhlich, May 30 2019

Formula

A(n,k) = binomial(binomial(k,2),n).
A(n,k) = Sum_{j=1..2*n} A325010(n,j) * binomial(k,j).
A(n,k) = A325004(n,k) - A325005(n,k) = (A325004(n,k) - A325007(n,k)) / 2 = A325005(n,k) - A325007(n,k).
G.f. for row n: Sum{j=1..2*n} A325010(n,j) * x^j / (1-x)^(j+1).
Linear recurrence for row n: T(n,k) = Sum_{j=0..2*n} binomial(-2-j,2*n-j) * T(n,k-1-j).
G.f. for column k: (1+x)^binomial(k,2) - 1.

A234249 Number of ways to choose 4 points in an n X n X n triangular grid.

Original entry on oeis.org

15, 210, 1365, 5985, 20475, 58905, 148995, 341055, 720720, 1426425, 2672670, 4780230, 8214570, 13633830, 21947850, 34389810, 52602165, 78738660, 115584315, 166695375, 236561325, 330791175, 456326325, 621682425, 837222750, 1115465715, 1471429260, 1923014940
Offset: 3

Views

Author

Heinrich Ludwig, Feb 02 2014

Keywords

Comments

Sequence is column #5 of A084546: a(n) = A084546(n+1, 4).
All elements of the sequence are multiples of 15.
a(n-1) is the number of chiral pairs of colorings of the 8 cubic facets of a tesseract (hypercube) with Schläfli symbol {4,3,3} or of the 8 vertices of a hyperoctahedron with Schläfli symbol {3,3,4}. Both figures are regular 4-D polyhedra and they are mutually dual. Each member of a chiral pair is a reflection, but not a rotation, of the other. - Robert A. Russell, Oct 20 2020

Crossrefs

Cf. A084546, A050534 (number of ways to choose 2 points), A093566 (3 points), A231653.
Cf. A337956 (oriented), A337956 (unoriented), A337956 (achiral) colorings, A331356 (hyperoctahedron edges, tesseract faces), A331360 (hyperoctahedron faces, tesseract edges), A337954 (hyperoctahedron facets, tesseract vertices).
Other polychora: A000389 (5-cell), A338950 (24-cell), A338966 (120-cell, 600-cell).
Row 4 of A325006 (orthotope facets, orthoplex vertices).

Programs

  • Maple
    A234249:=n->n*(n + 1)*(n - 1)*(n + 2)*(n - 2)*(n + 3)*(n^2 + n - 4)/384: seq(A234249(n), n=3..40); # Wesley Ivan Hurt, Jan 10 2017
  • Mathematica
    Table[Binomial[Binomial[n,2],4], {n,4,30}] (* Robert A. Russell, Oct 20 2020 *)
  • PARI
    Vec(-15*x^3*(x^2+5*x+1)/(x-1)^9 + O(x^100)) \\ Colin Barker, Feb 02 2014

Formula

a(n) = n*(n + 1)*(n - 1)*(n + 2)*(n - 2)*(n + 3)*(n^2 + n - 4)/384.
a(n) = C(C(n + 1, 2), 4).
G.f.: -15*x^3*(x^2+5*x+1) / (x-1)^9. - Colin Barker, Feb 02 2014
From Robert A. Russell, Oct 20 2020: (Start)
a(n-1) = 15*C(n,4) + 135*C(n,5) + 330*C(n,6) + 315*C(n,7) + 105*C(n,8), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
a(n-1) = A337956(n) - A337957(n) = (A337956(n) - A337958(n)) / 2 = A337957(n) - A337958(n).
a(n-1) = A325006(4,n). (End)

A198833 The number of inequivalent ways to color the vertices of a regular octahedron using at most n colors.

Original entry on oeis.org

1, 10, 56, 220, 680, 1771, 4060, 8436, 16215, 29260, 50116, 82160, 129766, 198485, 295240, 428536, 608685, 848046, 1161280, 1565620, 2081156, 2731135, 3542276, 4545100, 5774275, 7268976, 9073260, 11236456, 13813570, 16865705, 20460496, 24672560, 29583961
Offset: 1

Views

Author

Geoffrey Critzer, Oct 30 2011

Keywords

Comments

The cycle index: 1/48 (s_1^6 + 3 s_1^4 s_2 + 9 s_1^2 s_2^2 +7 s_2^3 + 8 s_3^2 + 6 s_1^2 s_4 + 6 s_2 s_4 + 8 s_6) is returned in Mathematica by CycleIndex[ Automorphisms[ OctahedralGraph ], s].
One-sixth the area of the right triangles with sides 2b+2, b^2+2b, and b^2+2b+2 with b = A000217(n), the n-th triangular number. - J. M. Bergot, Aug 02 2013
Also the number of ways to color the faces of a cube with n colors, counting each pair of mirror images as one.

Crossrefs

Cf. A047780 (oriented), A093566(n+1) (chiral), A337898 (achiral), A199406 (edges), A128766 (octahedron faces, cube vertices), A000332(n+3) (tetrahedron), A128766 (octahedron faces, cube vertices), A252705 (dodecahedron faces, icosahedron vertices), A252704 (icosahedron faces, dodecahedron vertices), A000217 (triangular numbers).
Row 3 of A325005 (orthotope facets, orthoplex vertices) and A337888 (orthotope faces, orthoplex peaks).

Programs

  • Magma
    [n*(n+1)*(n^2+n+2)*(n^2+n+4)/48: n in [1..35]]; // Vincenzo Librandi, Aug 04 2013
  • Mathematica
    Table[(n^6 + 3 n^5 + 9 n^4 + 13 n^3 + 14 n^2 + 8 n)/48, {n, 25}]
    CoefficientList[Series[-(1 + 3 x + 7 x^2 + 3 x^3 + x^4) / (x - 1)^7, {x, 0, 35}], x] (* Vincenzo Librandi, Aug 04 2013 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,10,56,220,680,1771,4060},40] (* Harvey P. Dale, Nov 06 2024 *)
  • PARI
    a(n)=n*(n+1)*(n^2+n+2)*(n^2+n+4)/48 \\ Charles R Greathouse IV, Aug 02 2013
    

Formula

a(n) = n*(n+1)*(n^2+n+2)*(n^2+n+4)/48.
G.f.: x*(1+3*x+7*x^2+3*x^3+x^4) / (1-x)^7. - R. J. Mathar, Oct 30 2011
a(n) = Sum_{i=1..A000217(n)} A000217(i). [Bruno Berselli, Sep 06 2013]
a(n) = 1*C(n,1) + 8*C(n,2) + 29*C(n,3) + 52*C(n,4) + 45*C(n,5) + 15*C(n,6), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors.
a(n) = A047780(n) - A093566(n+1) = (A047780(n) + A337898(n)) / 2 = A093566(n+1) + A337898(n). - Robert A. Russell, Oct 19 2020

A337898 Number of achiral colorings of the 6 square faces of a cube or the 6 vertices of a regular octahedron using n or fewer colors.

Original entry on oeis.org

1, 10, 55, 200, 560, 1316, 2730, 5160, 9075, 15070, 23881, 36400, 53690, 77000, 107780, 147696, 198645, 262770, 342475, 440440, 559636, 703340, 875150, 1079000, 1319175, 1600326, 1927485, 2306080, 2741950, 3241360
Offset: 1

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

An achiral coloring is identical to its reflection. The Schläfli symbols for the cube and regular octahedron are {4,3} and {3,4} respectively. They are mutually dual.
There are 24 elements in the automorphism group of the regular octahedron/cube that are not in the rotation group. They divide into five conjugacy classes. The first formula is obtained by averaging the cube face (octahedron vertex) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Odd Cycle Indices
Inversion 1 x_2^3
Vertex rotation* 8 x_6^1 Asterisk indicates that the
Edge rotation* 6 x_1^2x_2^2 operation is followed by an
Small face rotation* 6 x_2^1x_4^1 inversion.
Large face rotation* 3 x_1^4x_2^1

Crossrefs

Cf. A047780 (oriented), A198833 (unoriented), A093566(n+1) (chiral).
Other elements: A331351 (edges), A337897 (cube vertices/octahedron faces).
Other polyhedra: A006003 (simplex), A337962 (dodecahedron faces, icosahedron vertices), A337960 (icosahedron faces, dodecahedron vertices).
Row 3 of A325007 (orthotope facets, orthoplex vertices) and A337890 (orthotope faces, orthoplex peaks).

Programs

  • Mathematica
    Table[n(1+n)(2+n)(4-3n+3n^2)/24, {n, 35}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,10,55,200,560,1316},40] (* Harvey P. Dale, Feb 15 2022 *)
  • PARI
    a(n)=n*(n+1)*(n+2)*(3*n^2-3*n+4)/24 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n) = n * (n+1) * (n+2) * (3*n^2 - 3*n + 4) / 24.
a(n) = 1*C(n,1) + 8*C(n,2) + 28*C(n,3) + 36*C(n,4) + 15*C(n,5), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n) = 2*A198833(n) - A047780(n) = A047780(n) - 2*A093566(n+1) = A198833(n) - A093566(n+1).
G.f.: x * (x + 4*x^2 + 10*x^3) / (1-x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Wesley Ivan Hurt, Sep 30 2020

A337889 Array read by descending antidiagonals: T(n,k) is the number of chiral pairs of colorings of the square faces of a regular n-dimensional orthotope (hypercube) using k or fewer colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 40927, 0, 0, 20, 731279799, 314824333015938998688, 0, 0, 120, 732272925320, 38491882659300767730994725249684096, 38343035259947576596859560773963975000551460473665493534170658111488, 0
Offset: 2

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

Each member of a chiral pair is a reflection, but not a rotation, of the other. Each face is a square bounded by four edges. For n=2, the figure is a square with one face. For n=3, the figure is a cube with 6 faces. For n=4, the figure is a tesseract with 24 faces. The number of faces is 2^(n-2)*C(n,2).
Also the number of chiral pairs of colorings of peaks of an n-dimensional orthoplex. A peak is an (n-3)-dimensional simplex.
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).

Examples

			Array begins with T(2,1):
0     0         0            0               0                 0 ...
0     0         1           20             120               455 ...
0 40927 731279799 732272925320 155180061396500 12338466190481025 ...
		

Crossrefs

Cf. A337887 (oriented), A337888 (unoriented), A337890 (achiral).
Other elements: A325014 (vertices), A337409 (edges).
Other polytopes: A337885 (simplex), A337893 (orthoplex).
Rows 2-4 are A000004, A093566(n+1), A331356.

Programs

  • Mathematica
    m=2; (* dimension of color element, here a square face *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1+2x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n-m]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]],1,-1]Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
    array[n_, k_] := row[n] /. b -> k
    Table[array[n,d+m-n], {d,6}, {n,m,d+m-1}] // Flatten

Formula

T(n,k) = A337887(n,k) - A337888(n,k) = (A337887(n,k) - A337890(n,k)) / 2 = A337888(n,k) - A337890(n,k).

A337896 Number of chiral pairs of colorings of the 8 triangular faces of a regular octahedron or the 8 vertices of a cube using n or fewer colors.

Original entry on oeis.org

0, 1, 66, 920, 6350, 29505, 106036, 317856, 832140, 1961025, 4248310, 8590296, 16398746, 29814785, 51983400, 87399040, 142333656, 225359361, 347978730, 525376600, 777308070, 1129138241, 1613050076, 2269437600
Offset: 1

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

Each member of a chiral pair is a reflection, but not a rotation, of the other.

Examples

			For a(2)=1, centering the octahedron (cube) at the origin and aligning the diagonals (edges) with the axes, color the faces (vertices) in the octants ---, --+, -++, and +++ with one color and the other 4 elements with the other color.
		

Crossrefs

Cf. A000543 (oriented), A128766(unoriented), A337897 (achiral).
Other elements: A337406 (edges), A093566(n+1) (cube faces, octahedron vertices).
Other polyhedra: A000332 (simplex), A093566(n+1) (cube/octahedron).
Row 3 of A325014 (chiral pairs of colorings of orthoplex facets or orthotope vertices).
Row 3 of A337893 (chiral pairs of colorings of orthoplex faces or orthotope peaks).

Programs

  • Mathematica
    Table[(n-1)n^2(n+1)(8-5n^2+n^4)/48, {n,30}]

Formula

a(n) = (n-1) * n^2 * (n+1) * (8 - 5*n^2 + n^4) / 48.
a(n) = 1*C(n,2) + 63*C(n,3) + 662*C(n,4) + 2400*C(n,5) + 3900*C(n,6) + 2940*C(n,7) + 840*C(n,8), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
G.f.: x^2 * (1+x) * (1+56*x+306*x^2+56*x^3+x^4) / (1-x)^9.
a(n) = A000543(n) - A128766(n) = (A000543(n) - A337897(n)) / 2 = A128766(n) - A337897(n).

A144228 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) = number of simple graphs on n labeled nodes with k edges where each maximally connected subgraph has at most one cycle.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 3, 1, 1, 6, 15, 20, 15, 1, 10, 45, 120, 210, 222, 1, 15, 105, 455, 1365, 2913, 3670, 1, 21, 210, 1330, 5985, 20139, 49294, 68820, 1, 28, 378, 3276, 20475, 97860, 362670, 976560, 1456875, 1, 36, 630, 7140, 58905, 376236, 1914276, 7663500, 22089870, 34506640
Offset: 0

Views

Author

Alois P. Heinz, Sep 15 2008

Keywords

Examples

			T(4,4) = 15, because there are 15 simple graphs on 4 labeled nodes with 4 edges where each maximally connected subgraph has at most one cycle:
  1-2  1-2  1-2  1-2  1-2  1-2  1 2  1 2  1-2  1 2  1 2  1-2  1-2  1-2  1 2
  |/|  |X   |/   |\|   X|   \|  |/|   X|   /|  |\|  |X   |\   | |   X   |X|
  4 3  4 3  4-3  4 3  4 3  4-3  4-3  4-3  4-3  4-3  4-3  4-3  4-3  4-3  4 3
Triangle begins:
  1;
  1,  0;
  1,  1,  0;
  1,  3,  3,   1;
  1,  6, 15,  20,  15;
  1, 10, 45, 120, 210, 222;
  ...
		

Crossrefs

Columns k=0-3 give: A000012, A000217, A050534, A093566.
Main diagonal gives A137916.
Row sums give: A133686.
T(2n,n) gives A369828.

Programs

  • Maple
    cy:= proc(n) option remember; local t; binomial(n-1, 2) *add((n-3)! /(n-2-t)! *n^(n-2-t), t=1..n-2) end: T:= proc(n,k) option remember; local j; if k=0 then 1 elif k<0 or n
    				
  • Mathematica
    t[, 0] = 1; t[n, k_] /; (k<0 || nJean-François Alcover, Jan 15 2014, after Maple *)

Formula

T(n,0) = 1, T(n,k) = 0 if k<0 or nA000272(j+1) T(n-j-1,k-j) + A057500(j+1) T(n-j-1,k-j-1)).
E.g.f.: exp(B(x,y)), where B(x,y) = Sum(Sum(A062734(n,k)*y^k*x^n/n!, k=0..n), n=1..infinity) = -1/2*log(1+LambertW(-x*y))+1/2*LambertW(-x*y) -1/4*LambertW(-x*y)^2-1/y *(LambertW(-x*y)+1/2 *LambertW(-x*y)^2). - Vladeta Jovovic, Sep 16 2008

A194485 T(n,k) = number of ways to arrange k indistinguishable points on an n X n X n triangular grid so that no four points are in the same row or diagonal.

Original entry on oeis.org

1, 0, 3, 0, 3, 6, 0, 1, 15, 10, 0, 0, 20, 45, 15, 0, 0, 15, 120, 105, 21, 0, 0, 6, 207, 455, 210, 28, 0, 0, 1, 234, 1347, 1330, 378, 36, 0, 0, 0, 165, 2817, 5922, 3276, 630, 45, 0, 0, 0, 63, 4135, 19362, 20307, 7140, 990, 55, 0, 0, 0, 9, 4080, 47010, 94584, 58527, 14190, 1485
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Comments

Table starts
...1....0......0.......0.........0..........0...........0............0
...3....3......1.......0.........0..........0...........0............0
...6...15.....20......15.........6..........1...........0............0
..10...45....120.....207.......234........165..........63............9
..15..105....455....1347......2817.......4135........4080.........2463
..21..210...1330....5922.....19362......47010.......83745.......105663
..28..378...3276...20307.....94584.....337860......927471......1931571
..36..630...7140...58527....365904....1790472.....6924357.....21123489
..45..990..14190..148239...1193283....7622340....39196161....162957252
..55.1485..26235..339669...3413619...27489825...180512640....974497260
..66.2145..45760..718344...8800704...87018360...708150465...4794685500
..78.3003..76076.1422564..20845968..247874770..2442836682..20207649891
..91.4095.121485.2666664..46017972..647091588..7582054194..75074999142
.105.5460.187460.4771221..95710797.1569661600.21540941994.251128663929
.120.7140.280840.8201466.189154056.3576049620.56763356130.768641935191

Examples

			Some solutions for n=5, k=4:
......0..........0..........0..........1..........0..........0..........0
.....0.0........0.1........0.1........1.0........0.0........0.1........0.0
....0.0.0......0.0.1......1.0.0......0.0.0......0.0.0......0.0.0......1.1.0
...0.0.1.1....0.0.0.0....0.0.1.0....0.0.1.0....0.0.1.1....0.0.0.0....0.0.0.0
..0.1.0.0.1..0.1.1.0.0..0.1.0.0.0..0.1.0.0.0..0.0.1.1.0..0.1.1.0.1..1.0.1.0.0
		

Crossrefs

Column 1 is A000217.
Column 2 is A050534(n+1).
Column 3 is A093566(n+2).

Formula

Empirical:
T(n,1) = (1/2)*n^2 + (1/2)*n
T(n,2) = (1/8)*n^4 + (1/4)*n^3 - (1/8)*n^2 - (1/4)*n
T(n,3) = (1/48)*n^6 + (1/16)*n^5 - (1/16)*n^4 - (11/48)*n^3 + (1/24)*n^2 + (1/6)*n
T(n,4) = (1/384)*n^8 + (1/96)*n^7 - (1/64)*n^6 - (13/120)*n^5 + (19/128)*n^4 + (7/96)*n^3 - (13/96)*n^2 + (1/40)*n
T(n,5) = (1/3840)*n^10 + (1/768)*n^9 - (1/384)*n^8 - (59/1920)*n^7 + (281/3840)*n^6 + (149/3840)*n^5 - (5/24)*n^4 + (29/320)*n^3 + (11/80)*n^2 - (1/10)*n
T(n,6) = (1/46080)*n^12 + (1/7680)*n^11 - (1/3072)*n^10 - (137/23040)*n^9 + (871/46080)*n^8 + (3107/161280)*n^7 - (5573/46080)*n^6 + (1157/23040)*n^5 + (2627/11520)*n^4 - (1121/5760)*n^3 - (181/1440)*n^2 + (11/84)*n
T(n,7) = (1/645120)*n^14 + (1/92160)*n^13 - (1/30720)*n^12 - (79/92160)*n^11 + (101/30720)*n^10 + (757/129024)*n^9 - (3049/92160)*n^8 - (34099/645120)*n^7 + (6613/15360)*n^6 - (16859/23040)*n^5 + (1043/3840)*n^4 + (2759/5040)*n^3 - (753/1120)*n^2 + (13/56)*n
Empirical: general T(n,k,z) for fewer than z points in any row or diagonal is polynomial in n of degree 2k with lead coefficient 1/(2^k*k!) for small k.
T(n,1,2) = (1/2)*n^2 + (1/2)*n
T(n,1,3) = (1/2)*n^2 + (1/2)*n
T(n,1,4) = (1/2)*n^2 + (1/2)*n
T(n,2,2) = (1/8)*n^4 - (1/4)*n^3 - (1/8)*n^2 + (1/4)*n
T(n,2,3) = (1/8)*n^4 + (1/4)*n^3 - (1/8)*n^2 - (1/4)*n
T(n,2,4) = (1/8)*n^4 + (1/4)*n^3 - (1/8)*n^2 - (1/4)*n
T(n,3,3) = (1/48)*n^6 + (1/16)*n^5 - (3/16)*n^4 + (1/48)*n^3 + (1/6)*n^2 - (1/12)*n
T(n,3,4) = (1/48)*n^6 + (1/16)*n^5 - (1/16)*n^4 - (11/48)*n^3 + (1/24)*n^2 + (1/6)*n
T(n,4,3) = (1/384)*n^8 + (1/96)*n^7 - (5/64)*n^6 + (13/240)*n^5 + (27/128)*n^4 - (23/96)*n^3 - (13/96)*n^2 + (7/40)*n
T(n,4,4) = (1/384)*n^8 + (1/96)*n^7 - (1/64)*n^6 - (13/120)*n^5 + (19/128)*n^4 + (7/96)*n^3 - (13/96)*n^2 + (1/40)*n
T(n,5,3) = (1/3840)*n^10 + (1/768)*n^9 - (7/384)*n^8 + (37/1920)*n^7 + (737/3840)*n^6 - (2347/3840)*n^5 + (101/192)*n^4 + (93/320)*n^3 - (7/10)*n^2 + (3/10)*n
T(n,5,4) = (1/3840)*n^10 + (1/768)*n^9 - (1/384)*n^8 - (59/1920)*n^7 + (281/3840)*n^6 + (149/3840)*n^5 - (5/24)*n^4 + (29/320)*n^3 + (11/80)*n^2 - (1/10)*n
T(n,6,4) = (1/46080)*n^12 + (1/7680)*n^11 - (1/3072)*n^10 - (137/23040)*n^9 + (871/46080)*n^8 + (3107/161280)*n^7 - (5573/46080)*n^6 + (1157/23040)*n^5 + (2627/11520)*n^4 - (1121/5760)*n^3 - (181/1440)*n^2 + (11/84)*n
T(n,7,4) = (1/645120)*n^14 + (1/92160)*n^13 - (1/30720)*n^12 - (79/92160)*n^11 + (101/30720)*n^10 + (757/129024)*n^9 - (3049/92160)*n^8 - (34099/645120)*n^7 + (6613/15360)*n^6 - (16859/23040)*n^5 + (1043/3840)*n^4 + (2759/5040)*n^3 - (753/1120)*n^2 + (13/56)*n

A337961 Number of chiral pairs of colorings of the 12 pentagonal faces of a regular dodecahedron or the 12 vertices of a regular icosahedron using n or fewer colors.

Original entry on oeis.org

0, 14, 3720, 132184, 1987720, 17935806, 114638048, 570597216, 2348263008, 8320953630, 26126986952, 74247445272, 194049316552, 472265688622, 1080900468480, 2345089916288, 4854316187136, 9638888023278, 18442173583176
Offset: 1

Views

Author

Robert A. Russell, Oct 03 2020

Keywords

Comments

Each member of a chiral pair is a reflection, but not a rotation, of the other. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual.

Crossrefs

Cf. A000545 (oriented), A252705 (unoriented), A337962 (achiral).
Other elements: A337959 (dodecahedron vertices, icosahedron faces), A337964 (edges).
Other polyhedra: A000332 (tetrahedron), A093566(n+1) (cube faces, octahedron vertices), A337896 (octahedron faces, cube vertices).

Programs

  • Mathematica
    Table[(n^12-15n^8+14n^6+44n^4-44n^2)/120,{n,30}]
    LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{0,14,3720,132184,1987720,17935806,114638048,570597216,2348263008,8320953630,26126986952,74247445272,194049316552},20] (* Harvey P. Dale, Nov 17 2024 *)

Formula

a(n) = (n-1) * n^2 * (n+1) * (n^8 + n^6 - 14*n^4 + 44) / 120.
a(n) = 14*C(n,2) + 3678*C(n,3) + 117388*C(n,4) + 1363860*C(n,5) + 7918056*C(n,6) + 26332992*C(n,7) + 53428032*C(n,8) + 67359600*C(n,9) + 51559200*C(n,10) + 21954240*C(n,11) + 3991680*C(n,12), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
a(n) = A000545(n) - A252705(n) = (A000545(n) - A337962(n)) / 2 = A252705(n) - A337962(n).
Showing 1-10 of 16 results. Next