cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A050534 Tritriangular numbers: a(n) = binomial(binomial(n,2),2) = n*(n+1)*(n-1)*(n-2)/8.

Original entry on oeis.org

0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990, 1485, 2145, 3003, 4095, 5460, 7140, 9180, 11628, 14535, 17955, 21945, 26565, 31878, 37950, 44850, 52650, 61425, 71253, 82215, 94395, 107880, 122760, 139128, 157080, 176715, 198135, 221445, 246753, 274170, 303810, 335790
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999

Keywords

Comments

"There are n straight lines in a plane, no two of which are parallel and no three of which are concurrent. Their points of intersection being joined, show that the number of new lines drawn is (1/8)n(n-1)(n-2)(n-3)." (Schmall, 1915).
Several different versions of this sequence are possible, beginning with either one, two or three 0's.
If Y is a 3-subset of an n-set X then, for n>=6, a(n-4) is the number of (n-6)-subsets of X which have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Number of distinct ways to select 2 pairs of objects from a set of n+1 objects, when order doesn't matter. For example, with n = 3 (4 objects), the 3 possibilities are (12)(34), (13)(24), and (14)(23). - Brian Parsonnet, Jan 03 2012
Partial sums of A027480. - J. M. Bergot, Jul 09 2013
For the set {1,2,...,n}, the sum of the 2 smallest elements of all subsets with 3 elements is a(n) (see Bulut et al. link). - Serhat Bulut, Jan 20 2015
a(n) is also the number of subgroups of S_{n+1} (the symmetric group on n+1 elements) that are isomorphic to D_4 (the dihedral group of order 8). - Geoffrey Critzer, Sep 13 2015
a(n) is the coefficient of x1^(n-3)*x2^2 in exponential Bell polynomial B_{n+1}(x1,x2,...) (number of ways to select 2 pairs among n+1 objects, see above), hence its link with A000292 and A001296 (see formula). - Cyril Damamme, Feb 26 2018
Also the number of 4-cycles in the complete graph K_{n+1}. - Eric W. Weisstein, Mar 13 2018
Number of chiral pairs of colorings of the 4 edges or vertices of a square using n or fewer colors. Each member of a chiral pair is a reflection, but not a rotation, of the other. - Robert A. Russell, Oct 20 2020

Examples

			For a(3)=3, the chiral pairs of square colorings are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. - _Robert A. Russell_, Oct 20 2020
		

References

  • Arthur T. Benjamin and Jennifer Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 154.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, Problem 1, page 72.
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5, case k=2.

Crossrefs

Cf. A000217, A000332, A033487, A107394, A034827, A210569, Second column of triangle A001498.
Cf. similar sequences listed in A241765.
Cf. (square colorings) A006528 (oriented), A002817 (unoriented), A002411 (achiral),
Row 2 of A325006 (orthoplex facets, orthotope vertices) and A337409 (orthotope edges, orthoplex ridges).
Row 4 of A293496 (cycles of n colors using k or fewer colors).

Programs

  • GAP
    List([0..40],n->3*Binomial(n+1,4)); # Muniru A Asiru, Mar 20 2018
  • Magma
    [3*Binomial(n+1, 4): n in [0..40]]; // Vincenzo Librandi, Feb 14 2015
    
  • Maple
    [seq(binomial(n+1,4)*3,n=0..40)]; # Zerinvary Lajos, Jul 18 2006
  • Mathematica
    Table[Binomial[Binomial[n, 2], 2], {n, 0, 50}] (* Stefan Steinerberger, Apr 08 2006 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 3, 15}, 40] (* Harvey P. Dale, Dec 14 2011 *)
    (* Start from Eric W. Weisstein, Mar 13 2018 *)
    Binomial[Binomial[Range[0, 20], 2], 2]
    Nest[Binomial[#, 2] &, Range[0, 20], 2]
    Nest[PolygonalNumber[# - 1] &, Range[0, 20], 2]
    CoefficientList[Series[3 x^3/(1 - x)^5, {x, 0, 20}], x]
    (* End *)
  • PARI
    a(n)=n*(n+1)*(n-1)*(n-2)/8 \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    x='x+O('x^100); concat([0, 0, 0], Vec(3*x^3/(1-x)^5)) \\ Altug Alkan, Nov 01 2015
    
  • Sage
    [(binomial(binomial(n,2),2)) for n in range(0, 39)] # Zerinvary Lajos, Nov 30 2009
    

Formula

a(n) = 3*binomial(n+1, 4) = 3*A000332(n+1).
From Vladeta Jovovic, May 03 2002: (Start)
Recurrence: a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 3*x^3 / (1-x)^5. (End)
a(n+1) = T(T(n)) - T(n); a(n+2) = T(T(n)+n) where T is A000217. - Jon Perry, Jun 11 2003
a(n+1) = T(n)^2 - T(T(n)) where T is A000217. - Jon Perry, Jul 23 2003
a(n) = T(T(n-1)-1) where T is A000217. - Jon E. Schoenfield, Dec 14 2014
a(n) = 3*C(n, 4) + 3*C(n, 3), for n>3.
From Alexander Adamchuk, Apr 11 2006: (Start)
a(n) = (1/2)*Sum_{k=1..n} k*(k-1)*(k-2).
a(n) = A033487(n-2)/2, n>1.
a(n) = C(n-1,2)*C(n+1,2)/2, n>2. (End)
a(n) = A052762(n+1)/8. - Zerinvary Lajos, Apr 26 2007
a(n) = (4x^4 - 4x^3 - x^2 + x)/2 where x = floor(n/2)*(-1)^n for n >= 0. - William A. Tedeschi, Aug 24 2010
E.g.f.: x^3*exp(x)*(4+x)/8. - Robert Israel, Nov 01 2015
a(n) = Sum_{k=1..n} Sum_{i=1..k} (n-i-1)*(n-k). - Wesley Ivan Hurt, Sep 12 2017
a(n) = A001296(n-1) - A000292(n-1). - Cyril Damamme, Feb 26 2018
Sum_{n>=3} 1/a(n) = 4/9. - Vaclav Kotesovec, May 01 2018
a(n) = A006528(n) - A002817(n) = (A006528(n) - A002411(n)) / 2 = A002817(n) - A002411(n). - Robert A. Russell, Oct 20 2020
Sum_{n>=3} (-1)^(n+1)/a(n) = 32*log(2)/3 - 64/9. - Amiram Eldar, Jan 09 2022
a(n) = Sum_{k=1..2} (-1)^(k+1)*binomial(n,2-k)*binomial(n,2+k). - Gerry Martens, Oct 09 2022

Extensions

Additional comments from Antreas P. Hatzipolakis, May 03 2002

A093566 a(n) = n*(n-1)*(n-2)*(n-3)*(n^2-3*n-2)/48.

Original entry on oeis.org

0, 0, 0, 0, 1, 20, 120, 455, 1330, 3276, 7140, 14190, 26235, 45760, 76076, 121485, 187460, 280840, 410040, 585276, 818805, 1125180, 1521520, 2027795, 2667126, 3466100, 4455100, 5668650, 7145775, 8930376, 11071620, 13624345, 16649480, 20214480
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the number of chiral pairs of colorings of the faces of a cube (vertices of a regular octahedron) using n or fewer colors. - Robert A. Russell, Sep 28 2020

Examples

			For a(3+1) = 1, each of the three colors is applied to a pair of adjacent faces of the cube (vertices of the octahedron). - _Robert A. Russell_, Sep 28 2020
		

Crossrefs

From Robert A. Russell, Sep 28 2020: (Start)
Cf. A047780 (oriented), A198833 (unoriented), A337898 (achiral) colorings.
a(n+1) = A325006(3,n) (chiral pairs of colorings of orthotope facets or orthoplex vertices).
a(n+1) = A337889(3,n) (chiral pairs of colorings of orthotope faces or orthoplex peaks).
Other polyhedra: A000332 (tetrahedron), A337896 (cube/octahedron).
(End)

Programs

  • Mathematica
    Table[ Binomial[ Binomial[n-1, 2], 3], {n,0,32}]
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,1,20,120},40] (* Harvey P. Dale, Feb 18 2016 *)
  • PARI
    a(n)=n*(n-1)*(n-2)*(n-3)*(n^2-3*n-2)/48 \\ Charles R Greathouse IV, Jun 11 2015
  • Sage
    [(binomial(binomial(n,2),3)) for n in range(-1, 33)] # Zerinvary Lajos, Nov 30 2009
    

Formula

a(n) = binomial(binomial(n-1, 2), 3).
G.f.: -x^4*(1+13*x+x^2)/(x-1)^7. - R. J. Mathar, Dec 08 2010
a(n+1) = 1*C(n,3) + 16*C(n,4) + 30*C(n,5) + 15*C(n,6), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors. - Robert A. Russell, Sep 28 2020
a(n) = A000217(n-1)*A239352(n-2)/6. - R. J. Mathar, Mar 25 2022

Extensions

Edited (with a new definition) by N. J. A. Sloane, Jul 02 2008

A325000 Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 3, 1, 6, 4, 1, 10, 10, 5, 1, 15, 20, 15, 6, 1, 21, 35, 35, 21, 7, 1, 28, 56, 70, 56, 28, 8, 1, 36, 84, 126, 126, 84, 36, 9, 1, 45, 120, 210, 252, 210, 120, 45, 10, 1, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
Offset: 1

Views

Author

Robert A. Russell, Mar 23 2019

Keywords

Comments

For n=1, the figure is a line segment with two vertices. For n=2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with four triangular faces. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Each of its n+1 facets is a regular (n-1)-dimensional simplex. Two unoriented colorings are the same if congruent; chiral pairs are counted as one.
Note that antidiagonals are part of rows of the Pascal triangle.
T(n,k-n) is the number of chiral pairs of colorings of the facets (or vertices) of a regular n-dimensional simplex using k or fewer colors. - Robert A. Russell, Sep 28 2020

Examples

			The array begins with T(1,1):
  1  3  6  10  15   21   28    36    45    55    66     78     91    105 ...
  1  4 10  20  35   56   84   120   165   220   286    364    455    560 ...
  1  5 15  35  70  126  210   330   495   715  1001   1365   1820   2380 ...
  1  6 21  56 126  252  462   792  1287  2002  3003   4368   6188   8568 ...
  1  7 28  84 210  462  924  1716  3003  5005  8008  12376  18564  27132 ...
  1  8 36 120 330  792 1716  3432  6435 11440 19448  31824  50388  77520 ...
  1  9 45 165 495 1287 3003  6435 12870 24310 43758  75582 125970 203490 ...
  1 10 55 220 715 2002 5005 11440 24310 48620 92378 167960 293930 497420 ...
  ...
For T(1,2) = 3, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses two colors. For T(2,2)=4, the triangle may have 0, 1, 2, or 3 edges of one color.
		

Crossrefs

Cf. A324999 (oriented), A325001 (achiral).
Unoriented: A007318(n,k-1) (exactly k colors), A327084 (edges, ridges), A337884 (faces, peaks), A325005 (orthotope facets, orthoplex vertices), A325013 (orthoplex facets, orthotope vertices).
Chiral: A327085 (edges, ridges), A337885 (faces, peaks), A325006 (orthotope facets, orthoplex vertices), A325014 (orthoplex facets, orthotope vertices).
Cf. A104712 (same sequence for a triangle; same sequence apart from offset).
Rows 1-4 are A000217, A000292, A000332(n+3), A000389(n+4). - Robert A. Russell, Sep 28 2020

Programs

  • Mathematica
    Table[Binomial[d+1,n+1], {d,1,15}, {n,1,d}] // Flatten

Formula

T(n,k) = binomial(n+k,n+1) = A007318(n+k,n+1).
T(n,k) = Sum_{j=1..n+1} A007318(n,j-1) * binomial(k,j).
T(n,k) = A324999(n,k) + T(n,k-n) = (A324999(n,k) - A325001(n,k)) / 2 = T(n,k-n) + A325001(n,k). - Robert A. Russell, Sep 28 2020
G.f. for row n: x / (1-x)^(n+2).
Linear recurrence for row n: T(n,k) = Sum_{j=1..n+2} -binomial(j-n-3,j) * T(n,k-j).
G.f. for column k: (1 - (1-x)^k) / (x * (1-x)^k) - k.
T(n,k-n) = A324999(n,k) - T(n,k) = (A324999(n,k) - A325001(n,k)) / 2 = T(n,k) - A325001(n,k). - Robert A. Russell, Oct 10 2020

A234249 Number of ways to choose 4 points in an n X n X n triangular grid.

Original entry on oeis.org

15, 210, 1365, 5985, 20475, 58905, 148995, 341055, 720720, 1426425, 2672670, 4780230, 8214570, 13633830, 21947850, 34389810, 52602165, 78738660, 115584315, 166695375, 236561325, 330791175, 456326325, 621682425, 837222750, 1115465715, 1471429260, 1923014940
Offset: 3

Views

Author

Heinrich Ludwig, Feb 02 2014

Keywords

Comments

Sequence is column #5 of A084546: a(n) = A084546(n+1, 4).
All elements of the sequence are multiples of 15.
a(n-1) is the number of chiral pairs of colorings of the 8 cubic facets of a tesseract (hypercube) with Schläfli symbol {4,3,3} or of the 8 vertices of a hyperoctahedron with Schläfli symbol {3,3,4}. Both figures are regular 4-D polyhedra and they are mutually dual. Each member of a chiral pair is a reflection, but not a rotation, of the other. - Robert A. Russell, Oct 20 2020

Crossrefs

Cf. A084546, A050534 (number of ways to choose 2 points), A093566 (3 points), A231653.
Cf. A337956 (oriented), A337956 (unoriented), A337956 (achiral) colorings, A331356 (hyperoctahedron edges, tesseract faces), A331360 (hyperoctahedron faces, tesseract edges), A337954 (hyperoctahedron facets, tesseract vertices).
Other polychora: A000389 (5-cell), A338950 (24-cell), A338966 (120-cell, 600-cell).
Row 4 of A325006 (orthotope facets, orthoplex vertices).

Programs

  • Maple
    A234249:=n->n*(n + 1)*(n - 1)*(n + 2)*(n - 2)*(n + 3)*(n^2 + n - 4)/384: seq(A234249(n), n=3..40); # Wesley Ivan Hurt, Jan 10 2017
  • Mathematica
    Table[Binomial[Binomial[n,2],4], {n,4,30}] (* Robert A. Russell, Oct 20 2020 *)
  • PARI
    Vec(-15*x^3*(x^2+5*x+1)/(x-1)^9 + O(x^100)) \\ Colin Barker, Feb 02 2014

Formula

a(n) = n*(n + 1)*(n - 1)*(n + 2)*(n - 2)*(n + 3)*(n^2 + n - 4)/384.
a(n) = C(C(n + 1, 2), 4).
G.f.: -15*x^3*(x^2+5*x+1) / (x-1)^9. - Colin Barker, Feb 02 2014
From Robert A. Russell, Oct 20 2020: (Start)
a(n-1) = 15*C(n,4) + 135*C(n,5) + 330*C(n,6) + 315*C(n,7) + 105*C(n,8), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
a(n-1) = A337956(n) - A337957(n) = (A337956(n) - A337958(n)) / 2 = A337957(n) - A337958(n).
a(n-1) = A325006(4,n). (End)

A325004 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the facets of a regular n-dimensional orthotope using up to k colors.

Original entry on oeis.org

1, 4, 1, 9, 6, 1, 16, 24, 10, 1, 25, 70, 57, 15, 1, 36, 165, 240, 126, 21, 1, 49, 336, 800, 730, 252, 28, 1, 64, 616, 2226, 3270, 2008, 462, 36, 1, 81, 1044, 5390, 11991, 11880, 5006, 792, 45, 1, 100, 1665, 11712, 37450, 56133, 38970, 11440, 1287, 55, 1
Offset: 1

Views

Author

Robert A. Russell, Mar 23 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.
Also the number of oriented colorings of the vertices of a regular n-dimensional orthoplex using up to k colors.

Examples

			Array begins with A(1,1):
1  4    9    16     25      36       49        64        81        100 ...
1  6   24    70    165     336      616      1044      1665       2530 ...
1 10   57   240    800    2226     5390     11712     23355      43450 ...
1 15  126   730   3270   11991    37450    102726    253485     573265 ...
1 21  252  2008  11880   56133   221725    756288   2283876    6228145 ...
1 28  462  5006  38970  235235  1161832   4873128  17838492   58208920 ...
1 36  792 11440 116400  894465  5495896  28162368 124122780  481650400 ...
1 45 1287 24310 319815 3114540 23739310 148116618 782798490 3596651740 ...
For A(1,2) = 4, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses two colors.
		

Crossrefs

Cf. A325005 (unoriented), A325006 (chiral), A325007 (achiral), A325008 (exactly k colors)
Other n-dimensional polytopes: A324999 (simplex), A325012 (orthoplex)
Rows 1-3 are A000290, A006528, A047780.

Programs

  • Mathematica
    Table[Binomial[Binomial[d-n+2,2]+n-1,n]+Binomial[Binomial[d-n+1,2],n],{d,1,11},{n,1,d}] // Flatten

Formula

A(n,k) = binomial(binomial(k+1,2) + n-1, n) + binomial(binomial(k,2),n).
A(n,k) = Sum_{j=1..2n} A325008(n,j) * binomial(k,j).
A(n,k) = A325005(n,k) + A325006(n,k) = 2*A325005(n,k) - A325007(n,k) = 2*A325006(n,k) + A325007(n,k).
G.f. for row n: Sum{j=1..2n} A325008(n,j) * x^j / (1-x)^(j+1).
Linear recurrence for row n: T(n,k) = Sum_{j=0..2n} binomial(-2-j,2n-j) * T(n,k-1-j).
G.f. for column k: 1/(1-x)^binomial(k+1,2) + (1+x)^binomial(k,2) - 2.

A325005 Array read by descending antidiagonals: A(n,k) is the number of unoriented colorings of the facets of a regular n-dimensional orthotope using up to k colors.

Original entry on oeis.org

1, 3, 1, 6, 6, 1, 10, 21, 10, 1, 15, 55, 56, 15, 1, 21, 120, 220, 126, 21, 1, 28, 231, 680, 715, 252, 28, 1, 36, 406, 1771, 3060, 2002, 462, 36, 1, 45, 666, 4060, 10626, 11628, 5005, 792, 45, 1, 55, 1035, 8436, 31465, 53130, 38760, 11440, 1287, 55, 1
Offset: 1

Views

Author

Robert A. Russell, Mar 23 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. Two unoriented colorings are the same if congruent; chiral pairs are counted as one.
Also the number of unoriented colorings of the vertices of a regular n-dimensional orthoplex using up to k colors.

Examples

			Array begins with A(1,1):
1  3    6    10     15      21       28        36        45         55 ...
1  6   21    55    120     231      406       666      1035       1540 ...
1 10   56   220    680    1771     4060      8436     16215      29260 ...
1 15  126   715   3060   10626    31465     82251    194580     424270 ...
1 21  252  2002  11628   53130   201376    658008   1906884    5006386 ...
1 28  462  5005  38760  230230  1107568   4496388  15890700   50063860 ...
1 36  792 11440 116280  888030  5379616  26978328 115775100  436270780 ...
1 45 1287 24310 319770 3108105 23535820 145008513 752538150 3381098545 ...
For A(1,2) = 3, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses one color for each vertex.
		

Crossrefs

Cf. A325004 (oriented), A325006 (chiral), A325007 (achiral), A325009 (exactly k colors).
Other n-dimensional polytopes: A325000 (simplex), A325013 (orthoplex).
Rows 1-3 are A000217, A002817, A198833.

Programs

  • Mathematica
    Table[Binomial[Binomial[d-n+2,2]+n-1,n],{d,1,11},{n,1,d}] // Flatten

Formula

A(n,k) = binomial(n + binomial(k+1,2) - 1, n).
A(n,k) = Sum_{j=1..2n} A325009(n,j) * binomial(k,j).
A(n,k) = A325004(n,k) - A325006(n,k) = (A325004(n,k) + A325007(n,k)) / 2 = A325006(n,k) + A325007(n,k).
G.f. for row n: Sum_{j=1..2n} A325009(n,j) * x^j / (1-x)^(j+1).
Linear recurrence for row n: T(n,k) = Sum_{j=0..2n} binomial(-2-j,2n-j) * T(n,k-1-j).
G.f. for column k: 1/(1-x)^binomial(k+1,2) - 1.

A325007 Array read by descending antidiagonals: A(n,k) is the number of achiral colorings of the facets of a regular n-dimensional orthotope using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 18, 10, 1, 5, 40, 55, 15, 1, 6, 75, 200, 126, 21, 1, 7, 126, 560, 700, 252, 28, 1, 8, 196, 1316, 2850, 1996, 462, 36, 1, 9, 288, 2730, 9261, 11376, 5004, 792, 45, 1, 10, 405, 5160, 25480, 50127, 38550, 11440, 1287, 55, 1, 11, 550, 9075, 61776, 181027, 225225, 116160, 24310, 2002, 66, 1
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. An achiral coloring is identical to its reflection.
Also the number of achiral colorings of the vertices of a regular n-dimensional orthoplex using up to k colors.

Examples

			Array begins with A(1,1):
1  2   3     4      5      6       7        8         9        10 ...
1  6  18    40     75    126     196      288       405       550 ...
1 10  55   200    560   1316    2730     5160      9075     15070 ...
1 15 126   700   2850   9261   25480    61776    135675    275275 ...
1 21 252  1996  11376  50127  181027   559728   1529892   3784627 ...
1 28 462  5004  38550 225225 1053304  4119648  13942908  41918800 ...
1 36 792 11440 116160 881595 5263336 25794288 107427420 390891160 ...
For a(2,2)=6, all colorings are achiral: two with just one of the colors, two with one color on just one edge, one with opposite colors the same, and one with opposite colors different.
		

Crossrefs

Cf. A325004 (oriented), A325005 (unoriented), A325006 (chiral), A325011 (exactly k colors).
Other n-dimensional polytopes: A325001 (simplex), A325015 (orthoplex).
Rows 1-2 are A000027, A002411; column 2 is A186783(n+2).

Programs

  • Mathematica
    Table[Binomial[Binomial[d-n+2,2]+n-1,n]-Binomial[Binomial[d-n+1,2],n],{d,1,11},{n,1,d}] // Flatten
  • PARI
    a(n, k) = binomial(binomial(k+1, 2)+n-1, n) - binomial(binomial(k, 2), n)
    array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print(""))
    /* Print initial 6 rows and 8 columns of array as follows: */
    array(6, 8) \\ Felix Fröhlich, May 30 2019

Formula

A(n,k) = binomial(binomial(k+1,2) + n-1, n) - binomial(binomial(k,2),n).
A(n,k) = Sum_{j=1..2*n} A325011(n,j) * binomial(k,j).
A(n,k) = 2*A325005(n,k) - A325004(n,k) = (A325004(n,k) - 2*A325006(n,k)) / 2 = A325005(n,k) + A325006(n,k).
G.f. for row n: Sum{j=1..2*n} A325011(n,j) * x^j / (1-x)^(j+1).
Linear recurrence for row n: T(n,k) = Sum_{j=0..2*n} binomial(-2-j,2*n-j) * T(n,k-1-j).
G.f. for column k: 1/(1-x)^binomial(k+1,2) - (1+x)^binomial(k,2).

A325014 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthoplex using up to k colors.

Original entry on oeis.org

0, 1, 0, 3, 0, 0, 6, 3, 1, 0, 10, 15, 66, 94, 0, 15, 45, 920, 97974, 1047816, 0, 21, 105, 6350, 10700090, 481141220994, 400140831558512, 0, 28, 210, 29505, 390081800, 4802390808840576, 74515656021475803734579625, 527471421741473576372948457251328, 0
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. The chiral colorings of its facets come in pairs, each the reflection of the other.
Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.

Examples

			Array begins with A(1,1):
0  1     3        6        10         15          21           28 ...
0  0     3       15        45        105         210          378 ...
0  1    66      920      6350      29505      106036       317856 ...
0 94 97974 10700090 390081800 7280687610 86121007714 730895668104 ...
For A(2,3)=3, each square has one of the three colors on two adjacent edges.
		

Crossrefs

Cf. A325012 (oriented), A325013 (unoriented), A325015 (achiral), A325018 (exactly k colors).
Other n-dimensional polytopes: A007318(k,n+1) (simplex), A325006 (orthotope).
Rows 1-2 are A161680, A050534.

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&, n, EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[((CI0[#] - CI1[#]) pc[#]) & /@ IntegerPartitions[n]])/(n! 2^n)] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k
    Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.
A(k,n) = A325012(n,k) - A325013(n,k) = (A325012(n,k) - A325015(n,k)) / 2 = A325013(n,k) - A325015(n,k).
A(n,k) = Sum_{j=2..2^n} A325018(n,j) * binomial(k,j).

A337413 Array read by descending antidiagonals: T(n,k) is the number of chiral pairs of colorings of the edges of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 74, 0, 0, 15, 10704, 40927, 0, 0, 45, 345640, 731279799, 280317324, 0, 0, 105, 5062600, 732272925320, 3163614120031068, 24869435516248, 0, 0, 210, 45246810, 155180061396500, 314800331906964016128, 919853357924272852197243, 29931599129719666392, 0
Offset: 1

Views

Author

Robert A. Russell, Aug 26 2020

Keywords

Comments

Each member of a chiral pair is a reflection, but not a rotation, of the other. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges. For n=3, the figure is an octahedron with 12 edges. The number of edges is 2n*(n-1) for n>1.
Also the number of chiral pairs of colorings of the regular (n-2)-dimensional orthotopes (hypercubes) in a regular n-dimensional orthotope.

Examples

			Table begins with T(1,1):
0  0     0      0       0        0         0          0          0 ...
0  0     3     15      45      105       210        378        630 ...
0 74 10704 345640 5062600 45246810 288005144 1430618784 5881281480 ...
For T(2,3)=3, the chiral arrangements are AABC-AACB, ABBC-ACBB, and ABCC-ACCB.
		

Crossrefs

Cf. A337411 (oriented), A337412 (unoriented), A337414 (achiral).
Rows 2-4 are A050534, A337406, A331356.
Cf. A327085 (simplex edges), A337409 (orthotope edges), A325006 (orthoplex vertices).

Programs

  • Mathematica
    m=1; (* dimension of color element, here an edge *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]],1,-1]Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
    array[n_, k_] := row[n] /. b -> k
    Table[array[n,d+m-n], {d,8}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337411(n,k) - A337412(n,k) = (A337411(n,k) - A337414(n,k)) / 2 = A337412(n,k) - A337414(n,k).

A325010 Triangle read by rows: T(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthotope using exactly k colors. Row n has 2n columns.

Original entry on oeis.org

0, 1, 0, 0, 3, 3, 0, 0, 1, 16, 30, 15, 0, 0, 0, 15, 135, 330, 315, 105, 0, 0, 0, 6, 222, 1581, 4410, 5880, 3780, 945, 0, 0, 0, 1, 205, 3760, 23604, 71078, 116550, 107100, 51975, 10395, 0, 0, 0, 0, 120, 5715, 73755, 427260, 1351980, 2552130, 2962575, 2079000, 810810, 135135
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. The chiral colorings of its facets come in pairs, each the reflection of the other.
Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthoplex using exactly k colors.

Examples

			The triangle begins with T(1,1):
 0 1
 0 0 3  3
 0 0 1 16  30   15
 0 0 0 15 135  330   315    105
 0 0 0  6 222 1581  4410   5880    3780     945
 0 0 0  1 205 3760 23604  71078  116550  107100   51975   10395
 0 0 0  0 120 5715 73755 427260 1351980 2552130 2962575 2079000 810810 135135
For T(2,3)=3, the three squares have the two edges with the same color adjacent.
		

Crossrefs

Cf. A325008 (oriented), A325009 (unoriented), A325011 (achiral), A325006 (up to k colors).
Other n-dimensional polytopes: A325018 (orthoplex).

Programs

  • Mathematica
    Table[Sum[Binomial[j-k-1,j]Binomial[Binomial[k-j,2],n],{j,0,k-2}],{n,1,10},{k,1,2n}] // Flatten

Formula

T(n,k) = Sum{j=0..k-2} binomial(j-k-1,j) * binomial(binomial(k-j,2),n).
T(n,k) = A325008(n,k) - A325009(n,k) = (A325008(n,k) - A325011(n,k)) / 2 = A325009(n,k) - A325011(n,k).
Showing 1-10 of 11 results. Next