cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A325006 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthotope using up to k colors.

Original entry on oeis.org

0, 1, 0, 3, 0, 0, 6, 3, 0, 0, 10, 15, 1, 0, 0, 15, 45, 20, 0, 0, 0, 21, 105, 120, 15, 0, 0, 0, 28, 210, 455, 210, 6, 0, 0, 0, 36, 378, 1330, 1365, 252, 1, 0, 0, 0, 45, 630, 3276, 5985, 3003, 210, 0, 0, 0, 0, 55, 990, 7140, 20475, 20349, 5005, 120, 0, 0, 0, 0, 66, 1485, 14190, 58905, 98280, 54264, 6435, 45, 0, 0, 0, 0
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. The chiral colorings of its facets come in pairs, each the reflection of the other.
Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthoplex using up to k colors.

Examples

			Array begins with A(1,1):
0 1 3  6  10   15     21       28        36         45          55 ...
0 0 3 15  45  105    210      378       630        990        1485 ...
0 0 1 20 120  455   1330     3276      7140      14190       26235 ...
0 0 0 15 210 1365   5985    20475     58905     148995      341055 ...
0 0 0  6 252 3003  20349    98280    376992    1221759     3478761 ...
0 0 0  1 210 5005  54264   376740   1947792    8145060    28989675 ...
0 0 0  0 120 6435 116280  1184040   8347680   45379620   202927725 ...
0 0 0  0  45 6435 203490  3108105  30260340  215553195  1217566350 ...
0 0 0  0  10 5005 293930  6906900  94143280  886163135  6358402050 ...
0 0 0  0   1 3003 352716 13123110 254186856 3190187286 29248649430 ...
For a(2,3)=3, each chiral pair consists of two adjacent edges of the square with one of the three colors.
		

Crossrefs

Cf. A325004 (oriented), A325005 (unoriented), A325007 (achiral), A325010 (exactly k colors)
Other n-dimensional polytopes: A007318(k,n+1) (simplex), A325014 (orthoplex)
Rows 1-3 are A161680, A050534, A093566(n+1), A234249(n-1)

Programs

  • Mathematica
    Table[Binomial[Binomial[d-n+1,2],n],{d,1,12},{n,1,d}] // Flatten
  • PARI
    a(n, k) = binomial(binomial(k, 2), n)
    array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print(""))
    /* Print initial 10 rows and 11 columns of array as follows: */
    array(10, 11) \\ Felix Fröhlich, May 30 2019

Formula

A(n,k) = binomial(binomial(k,2),n).
A(n,k) = Sum_{j=1..2*n} A325010(n,j) * binomial(k,j).
A(n,k) = A325004(n,k) - A325005(n,k) = (A325004(n,k) - A325007(n,k)) / 2 = A325005(n,k) - A325007(n,k).
G.f. for row n: Sum{j=1..2*n} A325010(n,j) * x^j / (1-x)^(j+1).
Linear recurrence for row n: T(n,k) = Sum_{j=0..2*n} binomial(-2-j,2*n-j) * T(n,k-1-j).
G.f. for column k: (1+x)^binomial(k,2) - 1.

A325008 Triangle read by rows: T(n,k) is the number of oriented colorings of the facets of a regular n-dimensional orthotope using exactly k colors. Row n has 2n columns.

Original entry on oeis.org

1, 2, 1, 4, 9, 6, 1, 8, 30, 68, 75, 30, 1, 13, 84, 312, 735, 1020, 735, 210, 1, 19, 192, 1122, 4155, 10242, 16380, 15960, 8505, 1890, 1, 26, 381, 3322, 18285, 67679, 173936, 308056, 363825, 270900, 114345, 20790, 1, 34, 687, 8484, 66765, 352359, 1305612, 3479268, 6668865, 9035460, 8378370, 5031180, 1756755, 270270
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.
Also the number of oriented colorings of the vertices of a regular n-dimensional orthoplex using exactly k colors.

Examples

			Triangle begins with T(1,1):
 1  2
 1  4   9    6
 1  8  30   68    75    30
 1 13  84  312   735  1020    735    210
 1 19 192 1122  4155 10242  16380  15960   8505   1890
 1 26 381 3322 18285 67679 173936 308056 363825 270900 114345 20790
For T(2,2)=4, there are two squares with just one edge for one color, one square with opposite edges the same color, and one square with opposite edges different colors.
		

Crossrefs

Cf. A325009 (unoriented), A325010 (chiral), A325011 (achiral), A325004 (up to k colors).
Other n-dimensional polytopes: A325002 (simplex), A325016 (orthoplex).

Programs

  • Mathematica
    Table[Sum[Binomial[-j-2,k-j-1] Binomial[n + Binomial[j+2,2]-1, n], {j,0,k-1}] + Sum[Binomial[j-k-1,j] Binomial[Binomial[k-j,2],n],{j,0,k-2}], {n,1,10},{k,1,2n}] // Flatten

Formula

T(n,k) = Sum_{j=0..k-1} binomial(-j-2,k-j-1) * binomial(n + binomial(j+2,2)-1, n) + Sum_{j=0..k-2} binomial(j-k-1,j) * binomial(binomial(k-j,2),n).
T(n,k) = A325009(n,k) + A325010(n,k) = (A325009(n,k) + A325011(n,k)) / 2 = 2*A325010(n,k) + A325011(n,k).

A325009 Triangle read by rows: T(n,k) is the number of unoriented colorings of the facets of a regular n-dimensional orthotope using exactly k colors. Row n has 2n columns.

Original entry on oeis.org

1, 1, 1, 4, 6, 3, 1, 8, 29, 52, 45, 15, 1, 13, 84, 297, 600, 690, 420, 105, 1, 19, 192, 1116, 3933, 8661, 11970, 10080, 4725, 945, 1, 26, 381, 3321, 18080, 63919, 150332, 236978, 247275, 163800, 62370, 10395, 1, 34, 687, 8484, 66645, 346644, 1231857, 3052008, 5316885, 6483330, 5415795, 2952180, 945945, 135135
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. Two unoriented colorings are the same if congruent; chiral pairs are counted as one.
Also the number of unoriented colorings of the vertices of a regular n-dimensional orthoplex using exactly k colors.

Examples

			The triangle begins with T(1,1):
1  1
1  4   6    3
1  8  29   52    45    15
1 13  84  297   600   690    420    105
1 19 192 1116  3933  8661  11970  10080   4725    945
1 26 381 3321 18080 63919 150332 236978 247275 163800 62370 10395
For T(2,2)=4, there are two squares with just one edge for one color, one square with opposite edges the same color, and one square with opposite edges different colors.
		

Crossrefs

Cf. A325008 (oriented), A325010 (chiral), A325011 (achiral), A325005 (up to k colors).
Other n-dimensional polytopes: A007318(n,k-1) (simplex), A325017 (orthoplex).

Programs

  • Mathematica
    Table[Sum[Binomial[-j-2,k-j-1]Binomial[n+Binomial[j+2,2]-1,n],{j,0,k-1}],{n,1,10},{k,1,2n}] // Flatten

Formula

T(n,k) = Sum{j=0..k-1} binomial(-j-2, k-j-1) * binomial(n+binomial(j+2, 2)-1, n).
T(n,k) = A325009(n,k) + A325010(n,k) = 2*A325009(n,k) - A325011(n,k) = 2*A325010(n,k) + A325011(n,k).

A325011 Triangle read by rows: T(n,k) is the number of achiral colorings of the facets of a regular n-dimensional orthotope using exactly k colors. Row n has 2n columns.

Original entry on oeis.org

1, 0, 1, 4, 3, 0, 1, 8, 28, 36, 15, 0, 1, 13, 84, 282, 465, 360, 105, 0, 1, 19, 192, 1110, 3711, 7080, 7560, 4200, 945, 0, 1, 26, 381, 3320, 17875, 60159, 126728, 165900, 130725, 56700, 10395, 0, 1, 34, 687, 8484, 66525, 340929, 1158102, 2624748, 3964905, 3931200, 2453220, 873180, 135135, 0
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. An achiral coloring is identical to its reflection.
Also the number of achiral colorings of the vertices of a regular n-dimensional orthoplex using exactly k colors.

Examples

			Table begins with T(1,1):
 1  0
 1  4   3    0
 1  8  28   36    15     0
 1 13  84  282   465   360    105      0
 1 19 192 1110  3711  7080   7560   4200    945     0
 1 26 381 3320 17875 60159 126728 165900 130725 56700 10395 0
For T(2,3)=3, each of the three chiral pairs has two opposite edges with the same color.
		

Crossrefs

Cf. A325008 (oriented), A325009 (unoriented), A325010 (chiral), A325007 (up to k colors).
Other n-dimensional polytopes: A325003 (simplex), A325019 (orthoplex).

Programs

  • Mathematica
    Table[Sum[Binomial[-j-2,k-j-1] Binomial[n + Binomial[j+2,2]-1, n], {j,0,k-1}] - Sum[Binomial[j-k-1,j] Binomial[Binomial[k-j,2],n],{j,0,k-2}], {n,1,10},{k,1,2n}] // Flatten

Formula

T(n,k) = Sum_{j=0..k-1} binomial(-j-2,k-j-1) * binomial(n + binomial(j+2,2)-1, n) - Sum_{j=0..k-2} binomial(j-k-1,j) * binomial(binomial(k-j,2),n).
T(n,k) = 2*A325009(n,k) - A325008(n,k) = A325008(n,k) - 2*A325010(n,k) = A325009(n,k) - A325010(n,k).

A325018 Triangle read by rows: T(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthoplex using exactly k colors. Row n has 2^n columns.

Original entry on oeis.org

0, 1, 0, 0, 3, 3, 0, 1, 63, 662, 2400, 3900, 2940, 840, 0, 94, 97692, 10308758, 337560150, 5098740090, 42976836210, 224685801060, 775389028050, 1830791421900, 3007909258200, 3439214024400, 2685727044000, 1366701336000, 408648240000, 54486432000
Offset: 1

Views

Author

Robert A. Russell, Jun 09 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. The chiral colorings of its facets come in pairs, each the reflection of the other.
Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthotope (cube) using exactly k colors.

Examples

			Triangle begins with T(1,1):
0 1
0 0  3   3
0 1 63 662 2400 3900 2940 840
For T(2,3)=3, each square has one of the three colors on two adjacent edges.
		

Crossrefs

Cf. A325016 (oriented), A325017 (unoriented), A325019 (achiral), A325014 (up to k colors).
Other n-dimensional polytopes: A325010 (orthotope).

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&,n,EvenQ],MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, (a37 /@ sub)/2}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[((CI0[#] - CI1[#]) pc[#]) & /@ IntegerPartitions[n]])/(n! 2^n)] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k (* A325014 *)
    Table[LinearSolve[Table[Binomial[i,j],{i,1,2^n},{j,1,2^n}],Table[array[n,k],{k,1,2^n}]],{n,1,6}] // Flatten

Formula

A325014(n,k) = Sum_{j=1..2^n} T(n,j) * binomial(k,j).
T(n,k) = A325016(n,k) - A325017(n,k) = (A325016(n,k) - A325019(n,k)) / 2 = A325017(n,k) - A325019(n,k).

A338144 Triangle read by rows: T(n,k) is the number of chiral pairs of colorings of the edges of a regular n-D orthotope (or ridges of a regular n-D orthoplex) using exactly k colors. Row n has n*2^(n-1) columns.

Original entry on oeis.org

0, 0, 0, 3, 3, 0, 74, 10482, 303268, 3440700, 19842840, 65867760, 133580160, 168399000, 128898000, 54885600, 9979200, 0, 11158298, 4825419243699, 48019052798280376, 60392832865887732525, 20362602448352682660450
Offset: 1

Views

Author

Robert A. Russell, Oct 12 2020

Keywords

Comments

Chiral colorings come in pairs, each the reflection of the other. A ridge is an (n-2)-face of an n-D polytope. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges (vertices). For n=3, the figure is a cube (octahedron) with 12 edges. The number of edges (ridges) is n*2^(n-1). The Schläfli symbols for the n-D orthotope (hypercube) and the n-D orthoplex (hyperoctahedron, cross polytope) are {4,...,3,3} and {3,3,...,4} respectively, with n-2 3's in each case. The figures are mutually dual.
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).

Examples

			Triangle begins with T(1,1):
  0
  0  0     3      3
  0 74 10482 303268 3440700 19842840 65867760 133580160 168399000
  ...
For T(2,3)=3, the chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. For T(2,4)=3, the chiral pairs are ABCD-ADCB, ACBD-ADBC, and ABDC-ACDB.
		

Crossrefs

Cf. A338142 (oriented), A338143 (unoriented), A338145 (achiral), A337409 (k or fewer colors), A325018 (orthotope vertices, orthoplex facets).
Cf. A327089 (simplex), A338148 (orthoplex edges, orthotope ridges).

Programs

  • Mathematica
    m=1; (* dimension of color element, here an edge *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1+2x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n-m]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3, n}]], 1, -1]Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
    array[n_, k_] := row[n] /. b -> k
    Table[LinearSolve[Table[Binomial[i,j],{i,2^(n-m)Binomial[n,m]},{j,2^(n-m)Binomial[n,m]}], Table[array[n,k],{k,2^(n-m)Binomial[n,m]}]], {n,m,m+4}] // Flatten

Formula

A337409(n,k) = Sum_{j=1..n*2^(n-1)} T(n,j) * binomial(k,j).
T(n,k) = A338142(n,k) - A338143(n,k) = (A338142(n,k) - A338145(n,k)) / 2 = A338143(n,k) - A338145(n,k).
T(2,k) = A338148(2,k) = A325018(2,k) = A325010(2,k); T(3,k) = A338148(3,k).

A338148 Triangle read by rows: T(n,k) is the number of chiral pairs of colorings of the edges of a regular n-D orthoplex (or ridges of a regular n-D orthotope) using exactly k colors. Row 1 has 1 column; row n>1 has 2*n*(n-1) columns.

Original entry on oeis.org

0, 0, 0, 3, 3, 0, 74, 10482, 303268, 3440700, 19842840, 65867760, 133580160, 168399000, 128898000, 54885600, 9979200, 0, 40927, 731157018, 729348051686, 151526009158620, 11418355290999750, 415756294427389020, 8643340000393019040
Offset: 1

Views

Author

Robert A. Russell, Oct 12 2020

Keywords

Comments

Chiral colorings come in pairs, each the reflection of the other. A ridge is an (n-2)-face of an n-D polytope. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges (vertices). For n=3, the figure is an octahedron (cube) with 12 edges. For n>1, the number of edges (ridges) is 2*n*(n-1). The Schläfli symbols for the n-D orthotope (hypercube) and the n-D orthoplex (hyperoctahedron, cross polytope) are {4,3,...,3,3} and {3,3,...,3,4} respectively, with n-2 3's in each case. The figures are mutually dual.
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).

Examples

			Triangle begins with T(1,1):
  0
  0  0     3      3
  0 74 10482 303268 3440700 19842840 65867760 133580160 168399000
  ...
For T(2,3)=3, the chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. For T(2,4)=3, the chiral pairs are ABCD-ADCB, ACBD-ADBC, and ABDC-ACDB.
		

Crossrefs

Cf. A338146 (oriented), A338147 (unoriented), A338149 (achiral), A337413 (k or fewer colors), A325010 (orthoplex vertices, orthotope facets).
Cf. A327089 (simplex), A338144 (orthotope edges, orthoplex ridges).

Programs

  • Mathematica
    m=1; (* dimension of color element, here an edge *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3, n}]], 1, -1]Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
    array[n_, k_] := row[n] /. b -> k
    Join[{{0}},Table[LinearSolve[Table[Binomial[i,j],{i,2^(m+1)Binomial[n,m+1]},{j,2^(m+1)Binomial[n,m+1]}], Table[array[n,k],{k,2^(m+1)Binomial[n,m+1]}]], {n,m+1,m+4}]] // Flatten

Formula

For n>1, A337413(n,k) = Sum_{j=1..2*n*(n-1)} T(n,j) * binomial(k,j).
T(n,k) = A338146(n,k) - A338147(n,k) = (A338146(n,k) - A338149(n,k)) / 2 = A338147(n,k) - A338149(n,k).
T(2,k) = A338144(2,k) = A325018(2,k) = A325010(2,k); T(3,k) = A338144(3,k).
Showing 1-7 of 7 results.