Serhat Bulut has authored 6 sequences.
A253947
a(n) = 6*binomial(n+1,7).
Original entry on oeis.org
6, 48, 216, 720, 1980, 4752, 10296, 20592, 38610, 68640, 116688, 190944, 302328, 465120, 697680, 1023264, 1470942, 2076624, 2884200, 3946800, 5328180, 7104240, 9364680, 12214800, 15777450, 20195136, 25632288, 32277696, 40347120, 50086080, 61772832, 75721536
Offset: 6
For A={1,2,3,4,5,6,7}, the subsets with 6 elements are {1,2,3,4,5,6}, {1,2,3,4,5,7}, {1,2,3,4,6,7}, {1,2,3,5,6,7}, {1,2,4,5,6,7}, {1,3,4,5,6,7}, and {2,3,4,5,6,7}.
Sum of 3 smallest elements of each subset: a(7) = (1+2+3) + (1+2+3) + (1+2+3) + (1+2+3) + (1+2+4) + (1+3+4) + (2+3+4) = 48 = 6*binomial(7+1,7) = 6*A000580(7+1).
- Colin Barker, Table of n, a(n) for n = 6..1000
- Serhat Bulut, Oktay Erkan Temizkan, Subset Sum Problem
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
[6*Binomial(n+1, 7): n in [6..40]]; // Vincenzo Librandi, Feb 13 2015
-
Drop[Plus @@ Flatten[Part[#, 1 ;; 3] & /@ Subsets[Range@ #, {6}]] & /@
Range@ 30, 5] (* Michael De Vlieger, Jan 20 2015 *)
6 Binomial[Range[7, 31], 7] (* Michael De Vlieger, Feb 13 2015, after Alonso del Arte at A253946 *)
-
Vec(6*x^6/(1-x)^8 + O(x^100)) \\ Colin Barker, Apr 03 2015
A253946
a(n) = 6*binomial(n+1, 6).
Original entry on oeis.org
6, 42, 168, 504, 1260, 2772, 5544, 10296, 18018, 30030, 48048, 74256, 111384, 162792, 232560, 325584, 447678, 605682, 807576, 1062600, 1381380, 1776060, 2260440, 2850120, 3562650, 4417686, 5437152, 6645408, 8069424, 9738960, 11686752, 13948704, 16564086
Offset: 5
For A = {1, 2, 3, 4, 5, 6} the subsets with 5 elements are {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}.
The sum of 3 smallest elements of each subset: a(6) = (1 + 2 + 3) + (1 + 2 + 3) + (1 + 2 + 3) + (1 + 2 + 4) + (1 + 3 + 4) + (2 + 3 + 4) = 42 = 6*C(6 + 1, 6) = 6*A000579(6+1).
- Colin Barker, Table of n, a(n) for n = 5..1000
- Serhat Bulut and Oktay Erkan Temizkan, Subset Sum Problem, 2015.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
[6*Binomial(n+1, 6): n in [5..40]]; // Vincenzo Librandi, Feb 13 2015
-
A253946:=n->6*binomial(n+1,6): seq(A253946(n), n=5..50); # Wesley Ivan Hurt, Feb 13 2015
-
Drop[Plus @@ Flatten[Part[#, 1 ;; 3] & /@ Subsets[Range@ #, {5}]] & /@
Range@ 30, 4] (* Michael De Vlieger, Jan 20 2015 *)
6Binomial[Range[6, 29], 6] (* Alonso del Arte, Feb 05 2015 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{6,42,168,504,1260,2772,5544},40] (* Harvey P. Dale, May 14 2019 *)
-
Vec(6*x^5/(1-x)^7 + O(x^100)) \\ Colin Barker, Apr 03 2015
A253945
a(n) = 6*binomial(n+1,5).
Original entry on oeis.org
6, 36, 126, 336, 756, 1512, 2772, 4752, 7722, 12012, 18018, 26208, 37128, 51408, 69768, 93024, 122094, 158004, 201894, 255024, 318780, 394680, 484380, 589680, 712530, 855036, 1019466, 1208256, 1424016, 1669536, 1947792, 2261952, 2615382, 3011652, 3454542
Offset: 4
For A={1,2,3,4,5}, subsets with 4 elements are {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5,}, {2,3,4,5}.
Sum of 3 smallest elements of each subset: a(5) = (1+2+3) + (1+2+3) + (1+2+4) + (1+3+4) + (2+3+4) = 36 = 6*binomial(5+1,5) = 6*A000389(5+1).
- Colin Barker, Table of n, a(n) for n = 4..1000
- Serhat Bulut, Oktay Erkan Temizkan, Subset Sum Problem
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 9.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
[6*Binomial(n+1, 5): n in [4..40]]; // Vincenzo Librandi, Feb 13 2015
-
Drop[Plus @@ Flatten[Part[#, 1 ;; 3] & /@ Subsets[Range@ #, {4}]] & /@
Range@ 28, 3] (* Michael De Vlieger, Jan 20 2015 *)
6 Binomial[Range[5, 29], 5] (* Michael De Vlieger, Feb 13 2015, after Alonso del Arte at A253946 *)
-
Vec(6*x^4/(1-x)^6 + O(x^100)) \\ Colin Barker, Apr 03 2015
A253944
a(n) = 3*binomial(n+1,7).
Original entry on oeis.org
3, 24, 108, 360, 990, 2376, 5148, 10296, 19305, 34320, 58344, 95472, 151164, 232560, 348840, 511632, 735471, 1038312, 1442100, 1973400, 2664090, 3552120, 4682340, 6107400, 7888725, 10097568, 12816144, 16138848, 20173560, 25043040, 30886416, 37860768
Offset: 6
For A={1,2,3,4,5,6,7}, subsets with 6 elements are {1,2,3,4,5,6}, {1,2,3,4,5,7}, {1,2,3,4,6,7}, {1,2,3,5,6,7}, {1,2,4,5,6,7}, {1,3,4,5,6,7}, {2,3,4,5,6,7}.
Sum of 2 smallest elements of each subset:
a(7) = (1+2)+(1+2)+(1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 24 = 3*C(7+1,7) = 3*A000580(7+1).
- G. C. Greubel, Table of n, a(n) for n = 6..1000
- Serhat Bulut and Oktay Erkan Temizkan, Subset Sum Problem
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
[3*Binomial(n+1, 7): n in [6..40]]; // Vincenzo Librandi, Feb 13 2015
-
Drop[Plus @@ Flatten[Part[#, 1 ;; 2] & /@ Subsets[Range@ #, {6}]] & /@
Range@ 28, 5] (* Michael De Vlieger, Jan 20 2015 *)
3 Binomial[Range[7, 29], 7] (* Michael De Vlieger, Feb 13 2015, after Alonso del Arte at A253946 *)
-
a(n)=3*binomial(n+1,7) \\ Charles R Greathouse IV, Feb 04 2015
-
def A253944(n): return 3*binomial(n+1,7)
print([A253944(n) for n in range(6,51)]) # G. C. Greubel, Apr 03 2025
A253943
a(n) = 3*binomial(n+1,6).
Original entry on oeis.org
3, 21, 84, 252, 630, 1386, 2772, 5148, 9009, 15015, 24024, 37128, 55692, 81396, 116280, 162792, 223839, 302841, 403788, 531300, 690690, 888030, 1130220, 1425060, 1781325, 2208843, 2718576, 3322704, 4034712, 4869480, 5843376, 6974352, 8282043, 9787869, 11515140
Offset: 5
For A={1,2,3,4,5,6} subsets with 5 elements are {1,2,3,4,5}, {1,2,3,4,6}, {1,2,3,5,6}, {1,2,4,5,6}, {1,3,4,5,6}, {2,3,4,5,6}.
Sum of 2 smallest elements of each subset:
a(6) = (1+2) + (1+2) + (1+2) + (1+2) + (1+3) + (2+3) = 21 = 3*C(6+1,6) = 3*A000579(6+1).
- G. C. Greubel, Table of n, a(n) for n = 5..1000
- Serhat Bulut and Oktay Erkan Temizkan, Subset Sum Problem, 2015.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
[3*Binomial(n+1,6): n in [5..40]]; // Vincenzo Librandi, Feb 13 2015
-
Drop[Plus @@ Flatten[Part[#, 1 ;; 2] & /@ Subsets[Range@ #, {5}]] & /@
Range@ 28, 4] (* Michael De Vlieger, Jan 20 2015 *)
3 Binomial[Range[6, 29], 6] (* Michael De Vlieger, Feb 13 2015, after Alonso del Arte at A253946 *)
-
def A253943(n): return 3*binomial(n+1,6)
print([A253943(n) for n in range(5,51)]) # G. C. Greubel, Apr 03 2025
A253942
a(n) = 3*binomial(n+1, 5).
Original entry on oeis.org
3, 18, 63, 168, 378, 756, 1386, 2376, 3861, 6006, 9009, 13104, 18564, 25704, 34884, 46512, 61047, 79002, 100947, 127512, 159390, 197340, 242190, 294840, 356265, 427518, 509733, 604128, 712008, 834768, 973896, 1130976, 1307691, 1505826, 1727271, 1974024, 2248194
Offset: 4
For A={1,2,3,4}, the only subset with 4 elements is {1,2,3,4}; sum of 2 minimum elements of this subset: a(4) = 1+2 = 3 = 3*binomial(4+1, 5).
For A={1,2,3,4,5}, the subsets with 4 elements are {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}; sum of 2 smallest elements of each subset: a(5) = (1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 18 = 3*binomial(5+1, 5).
-
[3*Binomial(n+1, 5): n in [4..40]]; // Vincenzo Librandi, Feb 14 2015
-
a253942[n_] := Drop[Plus @@ Flatten[Part[#, 1 ;; 2] & /@ Subsets[Range@ #, {4}]] & /@ Range@ n, 3]; a253942[28] (* Michael De Vlieger, Jan 20 2015 *)
Table[3 Binomial[n + 1, 5], {n, 4, 35}] (* Vincenzo Librandi, Feb 14 2015 *)
-
a(n) = 3*binomial(n+1, 5); \\ Michel Marcus, Jan 20 2015
-
Vec(3*x^4/(x-1)^6 + O(x^100)) \\ Colin Barker, Jan 20 2015
Comments