cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Serhat Bulut

Serhat Bulut's wiki page.

Serhat Bulut has authored 6 sequences.

A253947 a(n) = 6*binomial(n+1,7).

Original entry on oeis.org

6, 48, 216, 720, 1980, 4752, 10296, 20592, 38610, 68640, 116688, 190944, 302328, 465120, 697680, 1023264, 1470942, 2076624, 2884200, 3946800, 5328180, 7104240, 9364680, 12214800, 15777450, 20195136, 25632288, 32277696, 40347120, 50086080, 61772832, 75721536
Offset: 6

Author

Serhat Bulut, Jan 20 2015

Keywords

Comments

For a set of integers {1,2,...,n}, a(n) is the sum of the 3 smallest elements of each subset with 6 elements, which is 6*binomial(n+1,7) (for n>=6), hence a(n) = 6*binomial(n+1,7) = 6*A000580(n+1).

Examples

			For A={1,2,3,4,5,6,7}, the subsets with 6 elements are {1,2,3,4,5,6}, {1,2,3,4,5,7}, {1,2,3,4,6,7}, {1,2,3,5,6,7}, {1,2,4,5,6,7}, {1,3,4,5,6,7}, and {2,3,4,5,6,7}.
Sum of 3 smallest elements of each subset: a(7) = (1+2+3) + (1+2+3) + (1+2+3) + (1+2+3) + (1+2+4) + (1+3+4) + (2+3+4) = 48 = 6*binomial(7+1,7) = 6*A000580(7+1).
		

Crossrefs

Cf. A000580 (binomial(n, 7)).

Programs

Formula

a(n) = 6*binomial(n+1,7) = 6*A000580(n+1).
G.f.: 6*x^6 / (1-x)^8. - Colin Barker, Apr 03 2015
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Wesley Ivan Hurt, Sep 03 2022

Extensions

More terms from Vincenzo Librandi, Feb 13 2015

A253946 a(n) = 6*binomial(n+1, 6).

Original entry on oeis.org

6, 42, 168, 504, 1260, 2772, 5544, 10296, 18018, 30030, 48048, 74256, 111384, 162792, 232560, 325584, 447678, 605682, 807576, 1062600, 1381380, 1776060, 2260440, 2850120, 3562650, 4417686, 5437152, 6645408, 8069424, 9738960, 11686752, 13948704, 16564086
Offset: 5

Author

Serhat Bulut, Jan 20 2015

Keywords

Comments

For a set of integers {1, 2, ..., n}, a(n) is the sum of the 3 smallest elements of each subset with 5 elements, which is 6*C(n+1, 6) (for n >= 5), hence a(n) = 6*C(n+1, 6) = 6 * A000579(n+1).

Examples

			For A = {1, 2, 3, 4, 5, 6} the subsets with 5 elements are {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}.
The sum of 3 smallest elements of each subset: a(6) = (1 + 2 + 3) + (1 + 2 + 3) + (1 + 2 + 3) + (1 + 2 + 4) + (1 + 3 + 4) + (2 + 3 + 4) = 42 = 6*C(6 + 1, 6) = 6*A000579(6+1).
		

Crossrefs

Cf. A000579.
Sixth column of A003506.

Programs

  • Magma
    [6*Binomial(n+1, 6): n in [5..40]]; // Vincenzo Librandi, Feb 13 2015
    
  • Maple
    A253946:=n->6*binomial(n+1,6): seq(A253946(n), n=5..50); # Wesley Ivan Hurt, Feb 13 2015
  • Mathematica
    Drop[Plus @@ Flatten[Part[#, 1 ;; 3] & /@ Subsets[Range@ #, {5}]] & /@
      Range@ 30, 4] (* Michael De Vlieger, Jan 20 2015 *)
    6Binomial[Range[6, 29], 6] (* Alonso del Arte, Feb 05 2015 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{6,42,168,504,1260,2772,5544},40] (* Harvey P. Dale, May 14 2019 *)
  • PARI
    Vec(6*x^5/(1-x)^7 + O(x^100)) \\ Colin Barker, Apr 03 2015

Formula

a(n) = 6*C(n+1,6) = 6*A000579(n+1).
G.f.: 6*x^5 / (1-x)^7. - Colin Barker, Apr 03 2015
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=5} 1/a(n) = 1/5.
Sum_{n>=5} (-1)^(n+1)/a(n) = 32*log(2) - 661/30. (End)

Extensions

More terms from Vincenzo Librandi, Feb 13 2015

A253945 a(n) = 6*binomial(n+1,5).

Original entry on oeis.org

6, 36, 126, 336, 756, 1512, 2772, 4752, 7722, 12012, 18018, 26208, 37128, 51408, 69768, 93024, 122094, 158004, 201894, 255024, 318780, 394680, 484380, 589680, 712530, 855036, 1019466, 1208256, 1424016, 1669536, 1947792, 2261952, 2615382, 3011652, 3454542
Offset: 4

Author

Serhat Bulut, Jan 20 2015

Keywords

Comments

For a set of integers {1,2,...,n}, a(n) is the sum of the 3 smallest elements of each subset with 4 elements, which is 6*binomial(n+1,5) for n>=4, hence a(n) = 6*binomial(n+1,5) = 6*A000389(n+1). - Serhat Bulut, Oktay Erkan Temizkan, Jan 20 2015

Examples

			For A={1,2,3,4,5}, subsets with 4 elements are {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5,}, {2,3,4,5}.
Sum of 3 smallest elements of each subset: a(5) = (1+2+3) + (1+2+3) + (1+2+4) + (1+3+4) + (2+3+4) = 36 = 6*binomial(5+1,5) = 6*A000389(5+1).
		

Crossrefs

Programs

Formula

a(n) = 6*A000389(n+1).
G.f.: 6*x^4 / (1-x)^6. - Colin Barker, Apr 03 2015
a(n) = Sum_{i=1..n-2} A000217(i-1)*A000217(i+1) with a(3)=0. [Bruno Berselli, Jul 20 2015]
E.g.f.: x^4*(5 + x)*exp(x)/20. - G. C. Greubel, Nov 24 2017

Extensions

More terms from Vincenzo Librandi, Feb 13 2015

A253944 a(n) = 3*binomial(n+1,7).

Original entry on oeis.org

3, 24, 108, 360, 990, 2376, 5148, 10296, 19305, 34320, 58344, 95472, 151164, 232560, 348840, 511632, 735471, 1038312, 1442100, 1973400, 2664090, 3552120, 4682340, 6107400, 7888725, 10097568, 12816144, 16138848, 20173560, 25043040, 30886416, 37860768
Offset: 6

Author

Serhat Bulut, Jan 20 2015

Keywords

Comments

For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 6 elements, which is 3*C(n+1,7) (for n>=6), hence a(n) = 3*C(n+1,7) = 3*A000580(n+1).

Examples

			For A={1,2,3,4,5,6,7}, subsets with 6 elements are {1,2,3,4,5,6}, {1,2,3,4,5,7}, {1,2,3,4,6,7}, {1,2,3,5,6,7}, {1,2,4,5,6,7}, {1,3,4,5,6,7}, {2,3,4,5,6,7}.
Sum of 2 smallest elements of each subset:
a(7) = (1+2)+(1+2)+(1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 24 = 3*C(7+1,7) = 3*A000580(7+1).
		

Crossrefs

Cf. A000580.

Programs

Formula

a(n) = 3*C(n+1,7) = 3*A000580(n+1).
a(n) = 3*C(n+1,7) = n*(n^6 - 14*n^5 + 70*n^4 - 140*n^3 + 49*n^2 + 154*n - 120)/1680.
From G. C. Greubel, Apr 03 2025: (Start)
G.f.: 3*x^6/(1-x)^8.
E.g.f.: (3/7!)*x^6*(x+7)*exp(x). (End)

Extensions

More terms from Vincenzo Librandi, Feb 13 2015

A253943 a(n) = 3*binomial(n+1,6).

Original entry on oeis.org

3, 21, 84, 252, 630, 1386, 2772, 5148, 9009, 15015, 24024, 37128, 55692, 81396, 116280, 162792, 223839, 302841, 403788, 531300, 690690, 888030, 1130220, 1425060, 1781325, 2208843, 2718576, 3322704, 4034712, 4869480, 5843376, 6974352, 8282043, 9787869, 11515140
Offset: 5

Author

Serhat Bulut, Jan 20 2015

Keywords

Comments

For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 5 elements, which is 3*C(n+1,6) (for n>=5), hence a(n) = 3*C(n+1,6) = 3*A000579(n+1). - Serhat Bulut, Oktay Erkan Temizkan, Jan 20 2015

Examples

			For A={1,2,3,4,5,6} subsets with 5 elements are {1,2,3,4,5}, {1,2,3,4,6}, {1,2,3,5,6}, {1,2,4,5,6}, {1,3,4,5,6}, {2,3,4,5,6}.
Sum of 2 smallest elements of each subset:
a(6) = (1+2) + (1+2) + (1+2) + (1+2) + (1+3) + (2+3) = 21 = 3*C(6+1,6) = 3*A000579(6+1).
		

Crossrefs

Cf. A000579.

Programs

Formula

a(n) = 3*C(n+1,6) = 3*A000579(n+1).
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=5} 1/a(n) = 2/5.
Sum_{n>=5} (-1)^(n+1)/a(n) = 64*log(2) - 661/15. (End)
From G. C. Greubel, Apr 03 2025: (Start)
G.f.: 3*x^5/(1-x)^7.
E.g.f.: (3/6!)*x^5*(x+6)*exp(x). (End)

Extensions

More terms from Vincenzo Librandi, Feb 13 2015

A253942 a(n) = 3*binomial(n+1, 5).

Original entry on oeis.org

3, 18, 63, 168, 378, 756, 1386, 2376, 3861, 6006, 9009, 13104, 18564, 25704, 34884, 46512, 61047, 79002, 100947, 127512, 159390, 197340, 242190, 294840, 356265, 427518, 509733, 604128, 712008, 834768, 973896, 1130976, 1307691, 1505826, 1727271, 1974024, 2248194
Offset: 4

Author

Serhat Bulut, Jan 20 2015

Keywords

Comments

For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 4 elements, which is 3*binomial(n+1, 5) (for n >= 4), hence a(n) = 3*binomial(n+1, 5) = 3*A000389(n+1).

Examples

			For A={1,2,3,4}, the only subset with 4 elements is {1,2,3,4}; sum of 2 minimum elements of this subset: a(4) = 1+2 = 3 = 3*binomial(4+1, 5).
For A={1,2,3,4,5}, the subsets with 4 elements are {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}; sum of 2 smallest elements of each subset: a(5) = (1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 18 = 3*binomial(5+1, 5).
		

Crossrefs

Cf. A000389.

Programs

  • Magma
    [3*Binomial(n+1, 5): n in [4..40]]; // Vincenzo Librandi, Feb 14 2015
  • Mathematica
    a253942[n_] := Drop[Plus @@ Flatten[Part[#, 1 ;; 2] & /@ Subsets[Range@ #, {4}]] & /@ Range@ n, 3]; a253942[28] (* Michael De Vlieger, Jan 20 2015 *)
    Table[3 Binomial[n + 1, 5], {n, 4, 35}] (* Vincenzo Librandi, Feb 14 2015 *)
  • PARI
    a(n) = 3*binomial(n+1, 5); \\ Michel Marcus, Jan 20 2015
    
  • PARI
    Vec(3*x^4/(x-1)^6 + O(x^100)) \\ Colin Barker, Jan 20 2015
    

Formula

a(n) = 3*A000389(n+1).
a(n) = (n-3)*(n-2)*(n-1)*n*(1+n)/40. - Colin Barker, Jan 20 2015
G.f.: 3*x^4 / (x-1)^6. - Colin Barker, Jan 20 2015
E.g.f.: x^4*(x+5)*exp(x)/40. - G. C. Greubel, Nov 25 2017
a(n) = Sum_{k=3..n-1} A050534(k). - Ivan N. Ianakiev, Oct 08 2023