cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A166038 Period of A022405 mod n.

Original entry on oeis.org

1, 3, 12, 18, 30, 12, 42, 18, 24, 30, 48, 36, 42, 42, 60, 36, 102, 24, 78, 90, 84, 48, 24, 36, 30, 42, 72, 126, 84, 60, 312, 72, 48, 102, 210, 72, 84, 78, 84, 90, 48, 84, 66, 144, 120, 24, 18, 36, 42, 30, 204, 126, 276, 72, 240, 126, 156, 84, 144, 180, 444, 312, 168, 144
Offset: 1

Views

Author

Carl R. White, Oct 05 2009

Keywords

Comments

Pisano-style numbers for the recurrence b(n) = n for 0 <= n <= 2, otherwise b(n) = b(n-1)*b(n-2) - b(n-3); that is, the sequence b(n) = A022405(n+1).

Crossrefs

Programs

  • bc
    /* GNU bc */ define p(m){auto os,a,b,c,d,k;if(m<3)return 2*m-1;os=scale;scale=0;a=0;b=1;c=2;k=0;while(1){d=(c*b+m-a)%m;a=b;b=c;c=d;k+=1;if(a==0&&b==1&&c==2)break};scale=os;return k};for(i=1;i<=200;i++)print p(i),",";print"\n"

A072878 a(n) = 4*a(n-1)*a(n-2)*a(n-3) - a(n-4) with a(1) = a(2) = a(3) = a(4) = 1.

Original entry on oeis.org

1, 1, 1, 1, 3, 11, 131, 17291, 99665321, 903016046275353, 6224717403288400029624460201, 2240882930472585840954332388399544581477407095086361, 50384188378657848181032338163962292285660644698840136656562636145266593550842871302412156442811
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002

Keywords

Comments

A subsequence of the generalized Markoff numbers.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[n]==4a[n-1]a[n-2]a[n-3]-a[n-4]},a,{n,15}] (* Harvey P. Dale, Nov 29 2014 *)

Formula

a(1) = a(2) = a(3) = a(4) = 1; a(n) = (a(n-1)^2 + a(n-3)^2 + a(n-2)^2)/a(n-4) for n >= 5.
From the recurrence a(n) = 4*a(n-1)*a(n-2)*a(n-3) - a(n-4), any four successive terms satisfy the Markoff-Hurwitz equation a(n)^2 + a(n-1)^2 + a(n-2)^2 + a(n-3)^2 = 4*a(n)*a(n-1)*a(n-2)*a(n-3), cf. A075276. As n tends to infinity, the limit of log(log(a(n)))/n is log x = 0.6093778633..., where x=1.839286755... is the real root of the cubic x^3 - x^2 - x - 1 = 0. - Andrew Hone, Nov 14 2005

Extensions

Entry revised Nov 19 2005, based on comments from Andrew Hone
a(13) from Harvey P. Dale, Nov 29 2014
Name clarified by Petros Hadjicostas, May 11 2019

A061292 a(n) = a(n-1)*a(n-2)*a(n-3) - a(n-4) for n>3 with a(0) = a(1) = a(2) = a(3) = 2.

Original entry on oeis.org

2, 2, 2, 2, 6, 22, 262, 34582, 199330642, 1806032092550706, 12449434806576800059248920402, 4481765860945171681908664776799089162954814190172722
Offset: 0

Views

Author

Stephen G Penrice, Jun 04 2001

Keywords

Comments

Any four consecutive terms are a solution to the Diophantine equation w^2 + x^2 + y^2 + z^2 = wxyz.
a(n) = 2 * A072878(n+1).

Crossrefs

Programs

  • Haskell
    a061292 n = a061292_list !! n
    a061292_list = 2 : 2 : 2 : 2 : zipWith (-)
       (zipWith3 (((*) .) . (*)) (drop 2 xs) (tail xs) xs) a061292_list
       where xs = tail a061292_list
    -- Reinhard Zumkeller, Mar 25 2015
  • Magma
    I:=[2,2,2,2]; [n le 4 select I[n] else Self(n-1)*Self(n-2)*Self(n-3)-Self(n-4): n in [1..12]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    a[1] := 2; a[2] := 2; a[3] := 2; a[4] := 2; a[n_] := a[n - 1]*a[n - 2]*a[n - 3] - a[n - 4]; Table[a[n], {n, 1, 15}] (* Stefan Steinerberger, Mar 31 2006 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==2,a[n]==a[n-1]a[n-2]a[n-3]- a[n-4]},a[n],{n,12}] (* Harvey P. Dale, Sep 15 2011 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org) and Jason Earls, Jun 05 2001

A072877 a(1) = a(2) = a(3) = a(4) = 1; a(n) = (a(n-1)*a(n-3) + a(n-2)^4)/a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 19, 119, 65339, 67258454, 959259994615659593, 171965197021698738644442682357, 12959040525296547835480490169418622922155526267774117749963303914461
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002

Keywords

Comments

A variation of a Somos-4 sequence with a(n-2)^4 in place of a(n-2)^2.

Crossrefs

Programs

  • Maple
    L[0]:=0; L[1]:=0; L[2]:=0; L[3]:=0; for n from 0 to 4000 do L[n+4]:=evalf(ln(1+exp(L[n+3]+L[n+1]-4*L[n+2]))+4*L[n+2]-L[n]): od: for n from 3990 to 4000 do print(evalf(ln(L[n+4])/(n+4))): od: #Note: L[n] is log(a[n]) # Andrew Hone, Nov 15 2005
  • Mathematica
    nxt[{a_,b_,c_,d_}]:={b,c,d,(d*b+c^4)/a}; NestList[nxt,{1,1,1,1},15][[All,1]] (* Harvey P. Dale, Jun 01 2022 *)

Formula

Lim_{n->infinity} (log(log(a(n))))/n = log(2+sqrt(3))/2 = A065918/2 or about 0.658. - Andrew Hone, Nov 15 2005; corrected by Michel Marcus, May 12 2019
From Jon E. Schoenfield, May 12 2019: (Start)
It appears that, for n >= 1,
a(n) = ceiling(e^(c0*x^n + d0/x^n)) if n is even,
ceiling(e^(c1*x^n + d1/x^n)) if n is odd,
where
x = sqrt(2 + sqrt(3)) = (sqrt(2) + sqrt(6))/2
c0 = 0.024915247166055931001426396817534982995670642690...
c1 = 0.029604794868229453467890216788323427656809346011...
d0 = -10.535089427608481105514469573411011428431309483956...
d1 = -2.856773870202800001336732759121362374871088274450...
(End)

Extensions

Definition corrected by Matthew C. Russell, Apr 24 2012

A061021 a(n) = a(n-1)*a(n-2) - a(n-3) with a(0) = a(1) = a(2) = 3.

Original entry on oeis.org

3, 3, 3, 6, 15, 87, 1299, 112998, 146784315, 16586334025071, 2434613678231239448367, 40381315689150066251526220641224742, 98312903521778500654864668915856114278134197773017871243
Offset: 0

Views

Author

Stephen G Penrice, May 23 2001

Keywords

Comments

Any three consecutive terms are a solution to the Diophantine equation x^2 + y^2 + z^2 = xyz.

Crossrefs

Programs

  • Haskell
    a061021 n = a061021_list !! n
    a061021_list = 3 : 3 : 3 : zipWith (-)
    (tail $ zipWith (*) (tail a061021_list) a061021_list) a061021_list
    -- Reinhard Zumkeller, Mar 25 2015
  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1] a[n - 2] - a[n - 3], a[0] == a[1] == a[2] == 3}, a, {n, 0, 12}] (* Michael De Vlieger, Aug 21 2016 *)
  • PARI
    for (n=0, 17, if (n>2, a=a1*a2 - a3; a3=a2; a2=a1; a1=a, if (n==0, a=a3=3, if (n==1, a=a2=3, a=a1=3))); write("b061021.txt", n, " ", a)) \\ Harry J. Smith, Jul 16 2009
    

Formula

From Jon E. Schoenfield, May 12 2019: (Start)
It appears that, for n >= 1,
a(n) = ceiling(e^(c0*phi^n - c1/(-phi)^n))
where
phi = (1 + sqrt(5))/2,
c0 = 0.4004033011137849744572073756789830081726425559860...
c1 = 0.2798639753144007577581523025628820390768226527315...
(End)

Extensions

More terms from Erich Friedman, Jun 03 2001
Name clarified by Petros Hadjicostas, May 11 2019

A074394 a(n) = a(n-1)*a(n-2) - a(n-3) with a(1) = 1, a(2) = 2, and a(3) = 3.

Original entry on oeis.org

1, 2, 3, 5, 13, 62, 801, 49649, 39768787, 1974480504962, 78522694637486171445, 155041529758800625329015665441303, 12174278697379026530632791354719900462885271361687873
Offset: 1

Views

Author

Henry Bottomley, Sep 24 2002

Keywords

Comments

All consecutive quadruples are pairwise coprime. Multiples of 2 occur when n=2 mod 4, multiples of 3 when n=3 mod 4, multiples of 5 when n=4 mod 7, multiples of 7 when n=10 mod 14, multiples of 9 when n=7 or 11 mod 24, multiples of 10 when n=18 mod 28. Multiples of 4, 6 and 8 never occur.

Examples

			a(6) = a(5)*a(4) - a(3) = 13*5 - 3 = 62.
		

Crossrefs

Programs

  • Haskell
    a074394 n = a074394_list !! (n-1)
    a074394_list = 1 : 2 : 3 : zipWith (-)
       (tail $ zipWith (*) (tail a074394_list) a074394_list) a074394_list
    -- Reinhard Zumkeller, Mar 25 2015
  • Mathematica
    nxt[{a_,b_,c_}]:={b,c,b*c-a}; NestList[nxt,{1,2,3},15][[All,1]] (* Harvey P. Dale, Jan 21 2023 *)

Formula

Lim_{n->infinity} a(n+1)/a(n)^phi = 1, where phi is the golden ratio (1+sqrt(5))/2 = A001622. - Benoit Cloitre, Sep 26 2002
From Jon E. Schoenfield, May 13 2019: (Start)
It appears that, for n >= 2,
a(n) = ceiling(e^(c*phi^n - d/(-phi)^n))
where
phi = (1 + sqrt(5))/2
c = 0.230193077518834725477008740044380256486365499661...
d = 0.067704372842879037264190305626317036100889750046...
(End)

A178768 Decimal expansion of real constant in an explicit counterexample to the Lagarias-Wang finiteness conjecture.

Original entry on oeis.org

7, 4, 9, 3, 2, 6, 5, 4, 6, 3, 3, 0, 3, 6, 7, 5, 5, 7, 9, 4, 3, 9, 6, 1, 9, 4, 8, 0, 9, 1, 3, 4, 4, 6, 7, 2, 0, 9, 1, 3, 2, 7, 3, 7, 0, 2, 3, 6, 0, 6, 4, 3, 1, 7, 3, 5, 8, 0, 2, 4, 0, 4, 5, 4, 5, 9, 3, 0, 7, 7, 5, 6, 4, 5, 6, 5, 6, 1, 1, 0, 3, 5, 0, 6, 7, 1, 2
Offset: 0

Views

Author

Jonathan Vos Post, Jun 11 2010

Keywords

Examples

			0.74932654633036755794396194809134467209132737023606431735802...
		

Crossrefs

Programs

  • PARI
    t(n) = if (n==0, 1, if (n==1, 2, if (n==2, 2, t(n-1)*t(n-2) - t(n-3)))); \\ A022405
    prodinf(n=1, (1 - t(n-1)/(t(n)*t(n+1)))^((-1)^n*fibonacci(n+1))) \\ Michel Marcus, Jun 14 2015; May 10 2019

Formula

Equals Product_{n >= 1} (1 - t(n-1)/(t(n)*t(n+1)))^((-1)^n*Fibonacci(n+1)), where t(n) = A022405(n+1) and Fibonacci(n) = A000045(n). See Theorem 1.1 of Hare et al. (2010, 2011). - Michel Marcus, May 10 2019

Extensions

More terms from Amiram Eldar, May 15 2021
Showing 1-7 of 7 results.