cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A022405 a(n) = a(n-1)*a(n-2) - a(n-3), with a(1) = 0, a(2) = 1, a(3) = 2.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 10, 37, 366, 13532, 4952675, 67019597734, 331926286207224918, 22245566178948766568816183137, 7383888166355511098764350563784314022618210032
Offset: 1

Views

Author

Robert G. Wilson v, Jul 05 2000

Keywords

Comments

Theorem 1.1 of Hare et al. (2010, 2011) involves a shifted version of this sequence and the Fibonacci sequence A000045. (The program by Alonso del Arte below does involve a shifted version of this sequence.) - Petros Hadjicostas, May 11 2019

Crossrefs

Programs

  • Magma
    I:=[0,1,2]; [n le 3 select I[n] else Self(n-1)*Self(n-2) - Self(n-3): n in [1..15]];  // G. C. Greubel, Mar 01 2018
  • Mathematica
    a[1] = 0; a[2] = 1; a[3] = 2; a[n_] := a[n] = a[n - 1] a[n - 2] - a[n - 3]; Table[a[n], {n, 1, 15}] (* Alonso del Arte, Jan 31 2011 *)
    nxt[{a_,b_,c_}]:={b,c,c*b-a}; NestList[nxt,{0,1,2},15][[;;,1]] (* Harvey P. Dale, Mar 23 2025 *)

Formula

It appears that lim_{n->infinity} log(a(n))/phi^n = 0.07743008049000107520747623421744398272089261907514..., where phi = (1 + sqrt(5))/2 is the golden ratio A001622. - Petros Hadjicostas and Jon E. Schoenfield, May 11 2019

Extensions

Name clarified by Michel Marcus, May 10 2019

A072877 a(1) = a(2) = a(3) = a(4) = 1; a(n) = (a(n-1)*a(n-3) + a(n-2)^4)/a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 19, 119, 65339, 67258454, 959259994615659593, 171965197021698738644442682357, 12959040525296547835480490169418622922155526267774117749963303914461
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002

Keywords

Comments

A variation of a Somos-4 sequence with a(n-2)^4 in place of a(n-2)^2.

Crossrefs

Programs

  • Maple
    L[0]:=0; L[1]:=0; L[2]:=0; L[3]:=0; for n from 0 to 4000 do L[n+4]:=evalf(ln(1+exp(L[n+3]+L[n+1]-4*L[n+2]))+4*L[n+2]-L[n]): od: for n from 3990 to 4000 do print(evalf(ln(L[n+4])/(n+4))): od: #Note: L[n] is log(a[n]) # Andrew Hone, Nov 15 2005
  • Mathematica
    nxt[{a_,b_,c_,d_}]:={b,c,d,(d*b+c^4)/a}; NestList[nxt,{1,1,1,1},15][[All,1]] (* Harvey P. Dale, Jun 01 2022 *)

Formula

Lim_{n->infinity} (log(log(a(n))))/n = log(2+sqrt(3))/2 = A065918/2 or about 0.658. - Andrew Hone, Nov 15 2005; corrected by Michel Marcus, May 12 2019
From Jon E. Schoenfield, May 12 2019: (Start)
It appears that, for n >= 1,
a(n) = ceiling(e^(c0*x^n + d0/x^n)) if n is even,
ceiling(e^(c1*x^n + d1/x^n)) if n is odd,
where
x = sqrt(2 + sqrt(3)) = (sqrt(2) + sqrt(6))/2
c0 = 0.024915247166055931001426396817534982995670642690...
c1 = 0.029604794868229453467890216788323427656809346011...
d0 = -10.535089427608481105514469573411011428431309483956...
d1 = -2.856773870202800001336732759121362374871088274450...
(End)

Extensions

Definition corrected by Matthew C. Russell, Apr 24 2012

A061021 a(n) = a(n-1)*a(n-2) - a(n-3) with a(0) = a(1) = a(2) = 3.

Original entry on oeis.org

3, 3, 3, 6, 15, 87, 1299, 112998, 146784315, 16586334025071, 2434613678231239448367, 40381315689150066251526220641224742, 98312903521778500654864668915856114278134197773017871243
Offset: 0

Views

Author

Stephen G Penrice, May 23 2001

Keywords

Comments

Any three consecutive terms are a solution to the Diophantine equation x^2 + y^2 + z^2 = xyz.

Crossrefs

Programs

  • Haskell
    a061021 n = a061021_list !! n
    a061021_list = 3 : 3 : 3 : zipWith (-)
    (tail $ zipWith (*) (tail a061021_list) a061021_list) a061021_list
    -- Reinhard Zumkeller, Mar 25 2015
  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1] a[n - 2] - a[n - 3], a[0] == a[1] == a[2] == 3}, a, {n, 0, 12}] (* Michael De Vlieger, Aug 21 2016 *)
  • PARI
    for (n=0, 17, if (n>2, a=a1*a2 - a3; a3=a2; a2=a1; a1=a, if (n==0, a=a3=3, if (n==1, a=a2=3, a=a1=3))); write("b061021.txt", n, " ", a)) \\ Harry J. Smith, Jul 16 2009
    

Formula

From Jon E. Schoenfield, May 12 2019: (Start)
It appears that, for n >= 1,
a(n) = ceiling(e^(c0*phi^n - c1/(-phi)^n))
where
phi = (1 + sqrt(5))/2,
c0 = 0.4004033011137849744572073756789830081726425559860...
c1 = 0.2798639753144007577581523025628820390768226527315...
(End)

Extensions

More terms from Erich Friedman, Jun 03 2001
Name clarified by Petros Hadjicostas, May 11 2019
Showing 1-3 of 3 results.