cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A165896 a(n) = (a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-1)*a(n-2)+a(n-1)*a(n-3)+a(n-2)*a(n-3))/a(n-4) with four initial ones.

Original entry on oeis.org

1, 1, 1, 1, 6, 51, 3001, 9180001, 14050074147451, 3870680638643416483474006, 4992392071450646411005278674572370014340582601, 2715030052293379508289500941366397276374058263752394148988972928520177978202810359001
Offset: 0

Views

Author

Jaume Oliver Lafont, Sep 29 2009

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^2+a[n-2]^2+a[n-3]^2+ a[n-1]a[n-2]+ a[n-1]a[n-3]+a[n-2]a[n-3])/a[n-4]},a,{n,13}] (* Harvey P. Dale, May 21 2012 *)
  • PARI
    a(n)=if(n<4,1,(a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-1)*a(n-2)+a(n-1)*a(n-3)+a(n-2)*a(n-3))/a(n-4))

Formula

a(n) ~ 1/sqrt(10) * c^(t^n), where t = A058265 = 1.8392867552141611325518525646532866..., c = 1.2712241060822553131735186905646486868228186258439... . - Vaclav Kotesovec, May 06 2015
a(n) = 10*a(n-1)*a(n-2)*a(n-3)-a(n-1)-a(n-2)-a(n-3)-a(n-4). - Bruno Langlois, Aug 21 2016

A276122 a(0) = a(1) = a(2) = 1; for n > 2, a(n) = (a(n-1)^2+a(n-2)^2+a(n-1)+a(n-2))/a(n-3).

Original entry on oeis.org

1, 1, 1, 4, 22, 526, 69427, 219111589, 91273561736491, 119994570874632853695766, 65713991236617279734602790963627271046, 47311933073383646516067037755547920981262829886906923065810924
Offset: 0

Views

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1]^2 + a[n - 2]^2 + a[n - 1] + a[n - 2])/a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 11}] (* Michael De Vlieger, Aug 21 2016 *)

Formula

a(n) = 6*a(n-1)*a(n-2)-a(n-3)-1.
a(n) ~ 1/6 * c^(phi^n), where c = 2.059783590102273... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 20 2017

Extensions

a(10) corrected by Seiichi Manyama, Aug 21 2016

A276124 a(0) = a(1) = a(2) = a(3) = 1; for n > 3, a(n) = (a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-1)*a(n-2)*a(n-3))/a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 4, 22, 589, 399253, 41144206447, 77387327118194895379, 10169897514576967837097322386922878932, 259050897146323086186965020577200627526185475088368701480903471601830
Offset: 0

Views

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1]^2 + a[n - 2]^2 + a[n - 3]^2 + a[n - 1] a[n - 2] a[n - 3])/a[n - 4], a[0] == a[1] == a[2] == a[3] == 1}, a, {n, 0, 11}] (* Michael De Vlieger, Aug 21 2016 *)
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(0){|s, i| s + i * i} + a[1..-1].inject(:*)
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276124(n)
      A(4, n)
    end # Seiichi Manyama, Aug 21 2016

Formula

a(n) = 8*a(n-1)*a(n-2)*a(n-3)-a(n-1)*a(n-2)-a(n-1)*a(n-3)-a(n-2)*a(n-3)-a(n-4).

A276126 a(0) = a(1) = a(2) = a(3) = a(4) = 1; for n>4, a(n) = ( a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-4)^2+a(n-1)*a(n-2)*a(n-3)*a(n-4) ) / a(n-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 33, 1281, 1853441, 3826997739521, 2989151785658720873470945, 271581474754155314350055167823358355425497243141, 57581776430597685625970981157448022010386123824977761496513036956000541901241585948341716033
Offset: 0

Views

Author

Seiichi Manyama, Aug 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_}]:={b,c,d,e,(e^2+d^2+c^2+b^2+e*d*c*b)/a}; NestList[nxt,{1,1,1,1,1},15][[All,1]] (* Harvey P. Dale, Aug 08 2022 *)
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(0){|s, i| s + i * i} + a[1..-1].inject(:*)
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276126(n)
      A(5, n)
    end

Formula

a(n) = 10*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-1)*a(n-2)*a(n-3) - a(n-2)*a(n-3)*a(n-4) - a(n-3)*a(n-4)*a(n-1) - a(n-4)*a(n-1)*a(n-2) - a(n-5).

A276131 a(n) = (a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-4)^2+a(n-1)*a(n-2)+a(n-1)*a(n-3)+a(n-1)*a(n-4)+a(n-2)*a(n-3)+a(n-2)*a(n-4)+a(n-3)*a(n-4))/a(n-5) with five initial ones.

Original entry on oeis.org

1, 1, 1, 1, 1, 10, 136, 20251, 413100001, 170660037240000001, 2912484838126132813026335712191641, 62371823031725048177115183368983888882661870237372850050710016335
Offset: 0

Views

Author

Seiichi Manyama, Aug 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_}]:={b,c,d,e,15(b*c*d*e)-a-b-c-d-e}; NestList[nxt,{1,1,1,1,1},15][[;;,1]] (* Harvey P. Dale, May 18 2024 *)

Formula

a(n) = 15*a(n-1)*a(n-2)*a(n-3)*a(n-4)-a(n-1)-a(n-2)-a(n-3)-a(n-4)-a(n-5).
Showing 1-5 of 5 results.