cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 124 results. Next

A250120 Coordination sequence for planar net 3.3.3.3.6 (also called the fsz net).

Original entry on oeis.org

1, 5, 9, 15, 19, 24, 29, 33, 39, 43, 48, 53, 57, 63, 67, 72, 77, 81, 87, 91, 96, 101, 105, 111, 115, 120, 125, 129, 135, 139, 144, 149, 153, 159, 163, 168, 173, 177, 183, 187, 192, 197, 201, 207, 211, 216, 221, 225, 231, 235
Offset: 0

Views

Author

N. J. A. Sloane, Nov 23 2014

Keywords

Comments

There are eleven uniform (or Archimedean) tilings (or planar nets), with vertex symbols 3^6, 3^4.6, 3^3.4^2, 3^2.4.3.4, 4^4, 3.4.6.4, 3.6.3.6, 6^3, 3.12^2, 4.6.12, and 4.8^2. Grünbaum and Shephard (1987) is the best reference.
a(n) is the number of vertices at graph distance n from any fixed vertex.
The Mathematica notebook can compute 30 or 40 iterations, and colors them with period 5. You could also change out images if you want to. These graphs are better for analyzing 5-iteration chunks of the pattern. You can see that under iteration all fragments of the circumferences are preserved in shape and translated outwards a distance approximately sqrt(21) (relative to small triangle edge), the length of a long diagonal of larger rhombus unit cell. The conjectured recurrence should follow from an analysis of how new pieces occur in between the translated pieces. - Bradley Klee, Nov 26 2014

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Fig. 2.1.5, p. 63.
  • Marjorie Senechal, Quasicrystals and geometry, Cambridge University Press, Cambridge, 1995, Fig. 1.10, Section 1.3, pp. 13-16.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
For partial sums of the present sequence, see A250121.

Programs

  • C
    /* Comments on the C program (see link) from Maurizio Paolini, Nov 23 2014: Basically what I do is deform the net onto the integral lattice, connect nodes aligned either horizontally, vertically or diagonally from northeast to southwest, marking as UNREACHABLE the nodes with coordinates (i, j) satisfying i + 2*j = 0 mod 7. Then the code computes the distance from each node to the central node of the grid. */
  • Mathematica
    CoefficientList[Series[(x^2+x+1)(x^4+3x^3+3x+1)/((x^4+x^3+x^2+x+1)(x-1)^2), {x, 0, 80}], x] (* or *) LinearRecurrence[{1, 0, 0, 0, 1, -1}, {1, 5, 9, 15, 19, 24, 29}, 60] (* Harvey P. Dale, May 05 2018 *)

Formula

Based on the computations of Darrah Chavey, Bradley Klee, and Maurizio Paolini, there is a strong conjecture that the first differences of this sequence are 4, 4, 6, 4, 5, 5, 4, 6, 4, 5, 5, 4, 6, 4, 5, 5, ..., that is, 4 followed by (4,6,4,5,5) repeated.
This would imply that the sequence satisfies the recurrence:
for n > 2, a(n) = a(n-1) + { n == 0,3 (mod 5), 4; n == 4 (mod 5), 6; n == 1,2 (mod 5), 5 }
(from Darrah Chavey)
and has generating function
(x^2+x+1)*(x^4+3*x^3+3*x+1)/((x^4+x^3+x^2+x+1)*(x-1)^2)
All the above conjectures are true - for proof see link to my article with Chaim Goodman-Strauss. - N. J. A. Sloane, Jan 14 2018; link added Mar 26 2018
a(n) ~ 24*n/5. - Stefano Spezia, May 08 2022
For n>0, a(n) = 2*(12*n + sqrt(1+2/sqrt(5))*sin(4*Pi*n/5) - sqrt(1-2/sqrt(5))*sin(2*Pi*n/5))/5. - Natalia L. Skirrow, Apr 13 2025

Extensions

a(6)-a(10) from Bradley Klee, Nov 23 2014
a(11)-a(49) from Maurizio Paolini, Nov 23 2014

A001844 Centered square numbers: a(n) = 2*n*(n+1)+1. Sums of two consecutive squares. Also, consider all Pythagorean triples (X, Y, Z=Y+1) ordered by increasing Z; then sequence gives Z values.

Original entry on oeis.org

1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4325, 4513
Offset: 0

Views

Author

Keywords

Comments

These are Hogben's central polygonal numbers denoted by
...2...
....P..
...4.n.
Numbers of the form (k^2+1)/2 for k odd.
(y(2x+1))^2 + (y(2x^2+2x))^2 = (y(2x^2+2x+1))^2. E.g., let y = 2, x = 1; (2(2+1))^2 + (2(2+2))^2 = (2(2+2+1))^2, (2(3))^2 + (2(4))^2 = (2(5))^2, 6^2 + 8^2 = 10^2, 36 + 64 = 100. - Glenn B. Cox (igloos_r_us(AT)canada.com), Apr 08 2002
a(n) is also the number of 3 X 3 magic squares with sum 3(n+1). - Sharon Sela (sharonsela(AT)hotmail.com), May 11 2002
For n > 0, a(n) is the smallest k such that zeta(2) - Sum_{i=1..k} 1/i^2 <= zeta(3) - Sum_{i=1..n} 1/i^3. - Benoit Cloitre, May 17 2002
Number of convex polyominoes with a 2 X (n+1) minimal bounding rectangle.
The prime terms are given by A027862. - Lekraj Beedassy, Jul 09 2004
First difference of a(n) is 4n = A008586(n). Any entry k of the sequence is followed by k + 2*(1 + sqrt(2k - 1)). - Lekraj Beedassy, Jun 04 2006
Integers of the form 1 + x + x^2/2 (generating polynomial is Schur's polynomial as in A127876). - Artur Jasinski, Feb 04 2007
If X is an n-set and Y and Z disjoint 2-subsets of X then a(n-4) is equal to the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Aug 26 2007
Row sums of triangle A132778. - Gary W. Adamson, Sep 02 2007
Binomial transform of [1, 4, 4, 0, 0, 0, ...]; = inverse binomial transform of A001788: (1, 6, 24, 80, 240, ...). - Gary W. Adamson, Sep 02 2007
Narayana transform (A001263) of [1, 4, 0, 0, 0, ...]. Equals A128064 (unsigned) * [1, 2, 3, ...]. - Gary W. Adamson, Dec 29 2007
k such that the Diophantine equation x^3 - y^3 = x*y + k has a solution with y = x-1. If that solution is (x,y) = (m+1,m) then m^2 + (m+1)^2 = k. Note that this Diophantine equation is an elliptic curve and (m+1,m) is an integer point on it. - James R. Buddenhagen, Aug 12 2008
Numbers k such that (k, k, 2*k-2) are the sides of an isosceles triangle with integer area. Also, k such that 2*k-1 is a square. - James R. Buddenhagen, Oct 17 2008
a(n) is also the least weight of self-conjugate partitions having n+1 different odd parts. - Augustine O. Munagi, Dec 18 2008
Prefaced with a "1": (1, 1, 5, 13, 25, 41, ...) = A153869 * (1, 2, 3, ...). - Gary W. Adamson, Jan 03 2009
Prefaced with a "1": (1, 1, 5, 13, 25, 41, ...) where a(n) = 2n*(n-1)+1, all tuples of square numbers (X-Y, X, X+Y) are produced by ((m*(a(n)-2n))^2, (m*a(n))^2, (m*(a(n)+2n-2))^2) where m is a whole number. - Doug Bell, Feb 27 2009
Equals (1, 2, 3, ...) convolved with (1, 3, 4, 4, 4, ...). E.g., a(3) = 25 = (1, 2, 3, 4) dot (4, 4, 3, 1) = (4 + 8 + 9 + 4). - Gary W. Adamson, May 01 2009
The running sum of squares taken two at a time. - Al Hakanson (hawkuu(AT)gmail.com), May 18 2009
Equals the odd integers convolved with (1, 2, 2, 2, ...). - Gary W. Adamson, May 25 2009
Equals the triangular numbers convolved with [1, 2, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009
When the positive integers are written in a square array by diagonals as in A038722, a(n) gives the numbers appearing on the main diagonal. - Joshua Zucker, Jul 07 2009
The finite continued fraction [n,1,1,n] = (2n+1)/(2n^2 + 2n + 1) = (2n+1)/a(n); and the squares of the first two denominators of the convergents = a(n). E.g., the convergents and value of [4,1,1,4] = 1/4, 1/5, 2/9, 9/41 where 4^2 + 5^2 = 41. - Gary W. Adamson, Jul 15 2010
From Keith Tyler, Aug 10 2010: (Start)
Running sum of A008574.
Square open pyramidal number; that is, the number of elements in a square pyramid of height (n) with only surface and no bottom nodes. (End)
For k>0, x^4 + x^2 + k factors over the integers iff sqrt(k) is in this sequence. - James R. Buddenhagen, Aug 15 2010
Create the simple continued fraction from Pythagorean triples to get [2n + 1; 2n^2 + 2n, 2n^2 + 2n + 1]; its value equals the rational number 2n + 1 + a(n) / (4n^4 + 8n^3 + 6n^2 + 2n + 1). - J. M. Bergot, Sep 30 2011
a(n), n >= 1, has in its prime number factorization only primes of the form 4*k+1, i.e., congruent to 1 (mod 4) (see A002144). This follows from the fact that a(n) is a primitive sum of two squares and odd. See Theorem 3.20, p. 164, in the given Niven-Zuckerman-Montgomery reference. E.g., a(3) = 25 = 5^2, a(6) = 85 = 5*17. - Wolfdieter Lang, Mar 08 2012
From Ant King, Jun 15 2012: (Start)
a(n) is congruent to 1 (mod 4) for all n.
The digital roots of the a(n) form a purely periodic palindromic 9-cycle 1, 5, 4, 7, 5, 7, 4, 5, 1.
The units' digits of the a(n) form a purely periodic palindromic 5-cycle 1, 5, 3, 5, 1.
(End)
Number of integer solutions (x,y) of |x| + |y| <= n. Geometrically: number of lattice points inside a square with vertices (n,0), (0,-n), (-n,0), (0,n). - César Eliud Lozada, Sep 18 2012
(a(n)-1)/a(n) = 2*x / (1+x^2) where x = n/(n+1). Note that in this form, this is the velocity-addition formula according to the special theory of relativity (two objects traveling at 1/(n+1) slower than c relative to each other appear to travel at 1/a(n) less than c to a stationary observer). - Christian N. K. Anderson, May 20 2013 [Corrected by Rémi Guillaume, May 22 2025]
A geometric curiosity: the envelope of the circles x^2 + (y-a(n)/2)^2 = ((2n+1)/2)^2 is the parabola y = x^2, the n=0 circle being the osculating circle at the parabola vertex. - Jean-François Alcover, Dec 02 2013
Draw n ellipses in the plane (n>0), any 2 meeting in 4 points; a(n-1) gives the number of internal regions into which the plane is divided (cf. A051890, A046092); a(n-1) = A051890(n) - 1 = A046092(n-1) + 1. - Jaroslav Krizek, Dec 27 2013
a(n) is also, of course, the scalar product of the 2-vector (n, n+1) (or (n+1, n)) with itself. The unique inverse of (n, n+1) as vector in the Clifford algebra over the Euclidean 2-space is (1/a(n))(0, n, n+1, 0) (similarly for the other vector). In general the unique inverse of such a nonzero vector v (odd element in Cl_2) is v^(-1) = (1/|v|^2) v. Note that the inverse with respect to the scalar product is not unique for any nonzero vector. See the P. Lounesto reference, sects. 1.7 - 1.12, pp. 7-14. See also the Oct 15 2014 comment in A147973. - Wolfdieter Lang, Nov 06 2014
Subsequence of A004431, for n >= 1. - Bob Selcoe, Mar 23 2016
Numbers k such that 2k - 1 is a perfect square. - Juri-Stepan Gerasimov, Apr 06 2016
The number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 574", based on the 5-celled von Neumann neighborhood. - Robert Price, May 13 2016
a(n) is the first integer in a sum of (2*n + 1)^2 consecutive integers that equals (2*n + 1)^4. - Patrick J. McNab, Dec 24 2016
Central elements of odd-length rows of the triangular array of positive integers. a(n) is the mean of the numbers in the (2*n + 1)-th row of this triangle. - David James Sycamore, Aug 01 2018
Intersection of A000982 and A080827. - David James Sycamore, Aug 07 2018
An off-diagonal of the array of Delannoy numbers, A008288, (or a row/column when the array is shown as a square). As such, this is one of the crystal ball sequences. - Jack W Grahl, Feb 15 2021 and Shel Kaphan, Jan 18 2023
a(n) appears as a solution to a "Riddler Express" puzzle on the FiveThirtyEight website. The Jan 21 2022 issue (problem) and the Jan 28 2022 issue (solution) present the following puzzle and include a proof. - Fold a square piece of paper in half, obtaining a rectangle. Fold again to obtain a square with 1/4 the size of the original square. Then make n cuts through the folded paper. a(n) is the greatest number of pieces of the unfolded paper after the cutting. - Manfred Boergens, Feb 22 2022
a(n) is (1/6) times the number of 2 X 2 triangles in the n-th order hexagram with 12*n^2 cells. - Donghwi Park, Feb 06 2024
If k is a centered square number, its index in this sequence is n = (sqrt(2k-1)-1)/2. - Rémi Guillaume, Mar 30 2025.
Row sums of the symmetric triangle of odd numbers [1]; [1, 3, 1]; [1, 3, 5, 3, 1]; [1, 3, 5, 7, 5, 3, 1]; .... - Marco Zárate, Jun 15 2025

Examples

			G.f.: 1 + 5*x + 13*x^2 + 25*x^3 + 41*x^4 + 61*x^5 + 85*x^6 + 113*x^7 + 145*x^8 + ...
The first few triples are (1,0,1), (3,4,5), (5,12,13), (7,24,25), ...
The first four such partitions, corresponding to n = 0,1,2,3, i.e., to a(n) = 1,5,13,25, are 1, 3+1+1, 5+3+3+1+1, 7+5+5+3+3+1+1. - _Augustine O. Munagi_, Dec 18 2008
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 125, 1964.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 50.
  • Pertti Lounesto, Clifford Algebras and Spinors, second edition, Cambridge University Press, 2001.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Travers et al., The Mysterious Lost Proof, Using Advanced Algebra, (1976), pp. 27.

Crossrefs

X values are A005408; Y values are A046092.
Cf. A008586 (first differences), A005900 (partial sums), A254373 (digital roots).
Subsequence of A004431.
Right edge of A055096; main diagonal of A069480, A078475, A129312.
Row n=2 (or column k=2) of A008288.
Cf. A016754.

Programs

  • Haskell
    a001844 n = 2 * n * (n + 1) + 1
    a001844_list = zipWith (+) a000290_list $ tail a000290_list
    -- Reinhard Zumkeller, Dec 04 2012
    
  • Magma
    [2*n^2 + 2*n + 1: n in [0..50]]; // Vincenzo Librandi, Jan 19 2013
    
  • Magma
    [n: n in [0..4400] | IsSquare(2*n-1)]; // Juri-Stepan Gerasimov, Apr 06 2016
    
  • Maple
    A001844:=-(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[2n(n + 1) + 1, {n, 0, 50}]
    FoldList[#1 + #2 &, 1, 4 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
    maxn := 47; Flatten[Table[SeriesCoefficient[Series[(n + (n - 1)*x)/(1 - x)^2, {x, 0, maxn}], k], {n, maxn}, {k, n - 1, n - 1}]] (* L. Edson Jeffery, Aug 24 2014 *)
    CoefficientList[ Series[-(x^2 + 2x + 1)/(x - 1)^3, {x, 0, 48}], x] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 5, 13}, 48] (* Robert G. Wilson v, Aug 01 2018 *)
    Total/@Partition[Range[0,50]^2,2,1] (* Harvey P. Dale, Dec 05 2020 *)
    Table[ j! Coefficient[Series[Exp[x]*(1 + 4*x + 2*x^2), {x, 0, 20}], x,
    j], {j, 0, 20}] (* Nikolaos Pantelidis, Feb 07 2023 *)
  • PARI
    {a(n) = 2*n*(n+1) + 1};
    
  • PARI
    x='x+O('x^200); Vec((1+x)^2/(1-x)^3) \\ Altug Alkan, Mar 23 2016
    
  • Python
    print([2*n*(n+1)+1 for n in range(48)]) # Michael S. Branicky, Jan 05 2021
  • Sage
    [i**2 + (i + 1)**2 for i in range(46)] # Zerinvary Lajos, Jun 27 2008
    

Formula

a(n) = 2*n^2 + 2*n + 1 = n^2 + (n+1)^2.
a(n) = 1 + 3 + 5 + ... + 2*n-1 + 2*n+1 + 2*n-1 + ... + 3 + 1. - Amarnath Murthy, May 28 2001
a(n) = 1/real(z(n+1)) where z(1)=i, (i^2=-1), z(k+1) = 1/(z(k)+2i). - Benoit Cloitre, Aug 06 2002
Nearest integer to 1/Sum_{k>n} 1/k^3. - Benoit Cloitre, Jun 12 2003
G.f.: (1+x)^2/(1-x)^3.
E.g.f.: exp(x)*(1+4x+2x^2).
a(n) = a(n-1) + 4n.
a(-n) = a(n-1).
a(n) = A064094(n+3, n) (fourth diagonal).
a(n) = 1 + Sum_{j=0..n} 4*j. - Xavier Acloque, Oct 08 2003
a(n) = A046092(n)+1 = (A016754(n)+1)/2. - Lekraj Beedassy, May 25 2004
a(n) = Sum_{k=0..n+1} (-1)^k*binomial(n, k)*Sum_{j=0..n-k+1} binomial(n-k+1, j)*j^2. - Paul Barry, Dec 22 2004
a(n) = ceiling((2n+1)^2/2). - Paul Barry, Jul 16 2006
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=1, a(1)=5, a(2)=13. - Jaume Oliver Lafont, Dec 02 2008
a(n)*a(n-1) = 4*n^4 + 1 for n > 0. - Reinhard Zumkeller, Feb 12 2009
Prefaced with a "1" (1, 1, 5, 13, 25, 41, ...): a(n) = 2*n*(n-1)+1. - Doug Bell, Feb 27 2009
a(n) = sqrt((A056220(n)^2 + A056220(n+1)^2) / 2). - Doug Bell, Mar 08 2009
a(n) = floor(2*(n+1)^3/(n+2)). - Gary Detlefs, May 20 2010
a(n) = A000330(n) - A000330(n-2). - Keith Tyler, Aug 10 2010
a(n) = A069894(n)/2. - J. M. Bergot, Jun 11 2012
a(n) = 2*a(n-1) - a(n-2) + 4. - Ant King, Jun 12 2012
Sum_{n>=0} 1/a(n) = (Pi/2)*tanh(Pi/2) = 1.4406595199775... = A228048. - Ant King, Jun 15 2012
a(n) = A209297(2*n+1,n+1). - Reinhard Zumkeller, Jan 19 2013
a(n)^3 = A048395(n)^2 + A048395(-n-1)^2. - Vincenzo Librandi, Jan 19 2013
a(n) = A000217(2n+1) - n. - Ivan N. Ianakiev, Nov 08 2013
a(n) = A251599(3*n+1). - Reinhard Zumkeller, Dec 13 2014
a(n) = A101321(4,n). - R. J. Mathar, Jul 28 2016
From Ilya Gutkovskiy, Jul 30 2016: (Start)
a(n) = Sum_{k=0..n} A008574(k).
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = exp(-1) = A068985. (End)
a(n) = 4 * A000217(n) + 1. - Bruce J. Nicholson, Jul 10 2017
a(n) = A002522(n) + A005563(n) = A002522(n+1) + A005563(n-1). - Bruce J. Nicholson, Aug 05 2017
Sum_{n>=0} a(n)/n! = 7*e. Sum_{n>=0} 1/a(n) = A228048. - Amiram Eldar, Jun 20 2020
a(n) = A000326(n+1) + A000217(n-1). - Charlie Marion, Nov 16 2020
a(n) = Integral_{x=0..2n+2} |1-x| dx. - Pedro Caceres, Dec 29 2020
From Amiram Eldar, Feb 17 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)*sech(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = Pi*csch(Pi)*sinh(Pi/2). (End)
a(n) = A001651(n+1) + 1 - A028242(n). - Charlie Marion, Apr 05 2022
a(n) = A016754(n) - A046092(n). - Leo Tavares, Sep 16 2022
For n>0, a(n) = A101096(n+2) / 30. - Andy Nicol, Feb 06 2025
From Rémi Guillaume, Apr 21 2025: (Start)
a(n) = (2*A003215(n)+1)/3.
a(n) = (4*A005448(n+1)-1)/3.
a(n) + a(n-1) = A001845(n) - A001845(n-1), for n >= 1.
a(n) = (A005917(n+1))/(2n+1). (End)

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A008586 Multiples of 4.

Original entry on oeis.org

0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 14 ).
A000466(n), a(n) and A053755(n) are Pythagorean triples. - Zak Seidov, Jan 16 2007
If X is an n-set and Y and Z disjoint 2-subsets of X then a(n-3) is equal to the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Aug 26 2007
Number of n-permutations (n>=1) of 5 objects u, v, z, x, y with repetition allowed, containing n-1 u's. Example: if n=1 then n-1 = zero (0) u, a(1)=4 because we have v, z, x, y. If n=2 then n-1 = one (1) u, a(2)=8 because we have vu, zu, xu, yu, uv, uz, ux, uy. A038231 formatted as a triangular array: diagonal: 4, 8, 12, 16, 20, 24, 28, 32, ... - Zerinvary Lajos, Aug 06 2008
For n > 0: numbers having more even than odd divisors: A048272(a(n)) < 0. - Reinhard Zumkeller, Jan 21 2012
A214546(a(n)) < 0 for n > 0. - Reinhard Zumkeller, Jul 20 2012
A090418(a(n)) = 0 for n > 0. - Reinhard Zumkeller, Aug 06 2012
Terms are the differences of consecutive centered square numbers (A001844). - Mihir Mathur, Apr 02 2013
a(n)*Pi = nonnegative zeros of the cycloid generated by a circle of radius 2 rolling along the positive x-axis from zero. - Wesley Ivan Hurt, Jul 01 2013
Apart from the initial term, number of vertices of minimal path on an n-dimensional cubic lattice (n>1) of side length 2, until a self-avoiding walk gets stuck. A004767 + 1. - Matthew Lehman, Dec 23 2013
The number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 2688. - Philippe A.J.G. Chevalier, Dec 29 2015
First differences of A001844. - Robert Price, May 13 2016
Numbers k such that Fibonacci(k) is a multiple of 3 (A033888). - Bruno Berselli, Oct 17 2017

Crossrefs

Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008585, A005843, A001477, A000217.

Programs

Formula

a(n) = A008574(n), n>0. - R. J. Mathar, Oct 28 2008
a(n) = Sum_{k>=0} A030308(n,k)*2^(k+2). - Philippe Deléham, Oct 17 2011
a(n+1) = A000290(n+2) - A000290(n). - Philippe Deléham, Mar 31 2013
G.f.: 4*x/(1-x)^2. - David Wilding, Jun 21 2014
E.g.f.: 4*x*exp(x). - Stefano Spezia, May 18 2021

A040000 a(0)=1; a(n)=2 for n >= 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Continued fraction expansion of sqrt(2) is 1 + 1/(2 + 1/(2 + 1/(2 + ...))).
Inverse binomial transform of Mersenne numbers A000225(n+1) = 2^(n+1) - 1. - Paul Barry, Feb 28 2003
A Chebyshev transform of 2^n: if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)). - Paul Barry, Oct 31 2004
An inverse Catalan transform of A068875 under the mapping g(x)->g(x(1-x)). A068875 can be retrieved using the mapping g(x)->g(xc(x)), where c(x) is the g.f. of A000108. A040000 and A068875 may be described as a Catalan pair. - Paul Barry, Nov 14 2004
Sequence of electron arrangement in the 1s 2s and 3s atomic subshells. Cf. A001105, A016825. - Jeremy Gardiner, Dec 19 2004
Binomial transform of A165326. - Philippe Deléham, Sep 16 2009
Let m=2. We observe that a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k). Then there is a link with A113311 and A115291: it is the same formula with respectively m=3 and m=4. We can generalize this result with the sequence whose g.f. is given by (1+z)^(m-1)/(1-z). - Richard Choulet, Dec 08 2009
With offset 1: number of permutations where |p(i) - p(i+1)| <= 1 for n=1,2,...,n-1. This is the identical permutation and (for n>1) its reversal.
Equals INVERT transform of bar(1, 1, -1, -1, ...).
Eventual period is (2). - Zak Seidov, Mar 05 2011
Also decimal expansion of 11/90. - Vincenzo Librandi, Sep 24 2011
a(n) = 3 - A054977(n); right edge of the triangle in A182579. - Reinhard Zumkeller, May 07 2012
With offset 1: minimum cardinality of the range of a periodic sequence with (least) period n. Of course the range's maximum cardinality for a purely periodic sequence with (least) period n is n. - Rick L. Shepherd, Dec 08 2014
With offset 1: n*a(1) + (n-1)*a(2) + ... + 2*a(n-1) + a(n) = n^2. - Warren Breslow, Dec 12 2014
With offset 1: decimal expansion of gamma(4) = 11/9 where gamma(n) = Cp(n)/Cv(n) is the n-th Poisson's constant. For the definition of Cp and Cv see A272002. - Natan Arie Consigli, Sep 11 2016
a(n) equals the number of binary sequences of length n where no two consecutive terms differ. Also equals the number of binary sequences of length n where no two consecutive terms are the same. - David Nacin, May 31 2017
a(n) is the period of the continued fractions for sqrt((n+2)/(n+1)) and sqrt((n+1)/(n+2)). - A.H.M. Smeets, Dec 05 2017
Also, number of self-avoiding walks and coordination sequence for the one-dimensional lattice Z. - Sean A. Irvine, Jul 27 2020

Examples

			sqrt(2) = 1.41421356237309504... = 1 + 1/(2 + 1/(2 + 1/(2 + 1/(2 + ...)))). - _Harry J. Smith_, Apr 21 2009
G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + ...
11/90 = 0.1222222222222222222... - _Natan Arie Consigli_, Sep 11 2016
		

References

  • A. Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.4 Powers and Roots, p. 144.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 276-278.

Crossrefs

Convolution square is A008574.
See A003945 etc. for (1+x)/(1-k*x).
From Jaume Oliver Lafont, Mar 26 2009: (Start)
Sum_{0<=k<=n} a(k) = A005408(n).
Prod_{0<=k<=n} a(k) = A000079(n). (End)
Cf. A000674 (boustrophedon transform).
Cf. A001333/A000129 (continued fraction convergents).
Cf. A000122, A002193 (sqrt(2) decimal expansion), A006487 (Egyptian fraction).
Cf. Other continued fractions for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040002 (contfrac(sqrt(5)) = (2,4,4,...)), A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870, A040930 (contfrac(sqrt(962)) = (31,62,62,...)).

Programs

  • Haskell
    a040000 0 = 1; a040000 n = 2
    a040000_list = 1 : repeat 2  -- Reinhard Zumkeller, May 07 2012
  • Maple
    Digits := 100: convert(evalf(sqrt(2)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[2],300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
    a[ n_] := 2 - Boole[n == 0]; (* Michael Somos, Dec 28 2014 *)
    PadRight[{1},120,2] (* or *) RealDigits[11/90, 10, 120][[1]] (* Harvey P. Dale, Jul 12 2025 *)
  • PARI
    {a(n) = 2-!n}; /* Michael Somos, Apr 16 2007 */
    
  • PARI
    a(n)=1+sign(n)  \\ Jaume Oliver Lafont, Mar 26 2009
    
  • PARI
    allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(2)); for (n=0, 20000, write("b040000.txt", n, " ", x[n+1]));  \\ Harry J. Smith, Apr 21 2009
    

Formula

G.f.: (1+x)/(1-x). - Paul Barry, Feb 28 2003
a(n) = 2 - 0^n; a(n) = Sum_{k=0..n} binomial(1, k). - Paul Barry, Oct 16 2004
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*2^(n-2*k)/(n-k). - Paul Barry, Oct 31 2004
A040000(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*A068875(n-k). - Paul Barry, Nov 14 2004
From Michael Somos, Apr 16 2007: (Start)
Euler transform of length 2 sequence [2, -1].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u-v)*(u+v) - 2*v*(u-w).
E.g.f.: 2*exp(x) - 1.
a(n) = a(-n) for all n in Z (one possible extension to n<0). (End)
G.f.: (1-x^2)/(1-x)^2. - Jaume Oliver Lafont, Mar 26 2009
G.f.: exp(2*atanh(x)). - Jaume Oliver Lafont, Oct 20 2009
a(n) = Sum_{k=0..n} A108561(n,k)*(-1)^k. - Philippe Deléham, Nov 17 2013
a(n) = 1 + sign(n). - Wesley Ivan Hurt, Apr 16 2014
10 * 11/90 = 11/9 = (11/2 R)/(9/2 R) = Cp(4)/Cv(4) = A272005/A272004, with R = A081822 (or A070064). - Natan Arie Consigli, Sep 11 2016
a(n) = A001227(A000040(n+1)). - Omar E. Pol, Feb 28 2018

A008486 Expansion of (1 + x + x^2)/(1 - x)^2.

Original entry on oeis.org

1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177, 180, 183, 186
Offset: 0

Views

Author

Keywords

Comments

Also the Engel expansion of exp^(1/3); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002
Coordination sequence for planar net 6^3 (the graphite net, or the graphene crystal) - that is, the number of atoms at graph distance n from any fixed atom. Also for the hcb or honeycomb net. - N. J. A. Sloane, Jan 06 2013, Mar 31 2018
Coordination sequence for 2-dimensional cyclotomic lattice Z[zeta_3].
Conjecture: This is also the maximum number of edges possible in a planar simple graph with n+2 vertices. - Dmitry Kamenetsky, Jun 29 2008
The conjecture is correct. Proof: For n=0 the theorem holds, the maximum planar graph has n+2=2 vertices and 1 edge. Now suppose that we have a connected planar graph with at least 3 vertices. If it contains a face that is not a triangle, we can add an edge that divides this face into two without breaking its planarity. Hence all maximum planar graphs are triangulations. Euler's formula for planar graphs states that in any planar simple graph with V vertices, E edges and F faces we have V+F-E=2. If all faces are triangles, then F=2E/3, which gives us E=3V-6. Hence for n>0 each maximum planar simple graph with n+2 vertices has 3n edges. - Michal Forisek, Apr 23 2009
a(n) = sum of natural numbers m such that n - 1 <= m <= n + 1. Generalization: If a(n,k) = sum of natural numbers m such that n - k <= m <= n + k (k >= 1) then a(n,k) = (k + n)*(k + n + 1)/2 = A000217(k+n) for 0 <= n <= k, a(n,k) = a(n-1,k) +2k + 1 = ((k + n - 1)*(k + n)/2) + 2k + 1 = A000217(k+n-1) +2k +1 for n >= k + 1 (see e.g. A008486). - Jaroslav Krizek, Nov 18 2009
a(n) = partial sums of A158799(n). Partial sums of a(n) = A005448(n). - Jaroslav Krizek, Dec 06 2009
Integers n dividing a(n) = a(n-1) - a(n-2) with initial conditions a(0)=0, a(1)=1 (see A128834 with offset 0). - Thomas M. Bridge, Nov 03 2013
a(n) is conjectured to be the number of polygons added after n iterations of the polygon expansions (type A, B, C, D & E) shown in the Ngaokrajang link. The patterns are supposed to become the planar Archimedean net 3.3.3.3.3.3, 3.6.3.6, 3.12.12, 3.3.3.3.6 and 4.6.12 respectively when n - > infinity. - Kival Ngaokrajang, Dec 28 2014
Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I. - Ray Chandler, Nov 21 2016
Conjecture: let m = n + 2, p is the polyhedron formed by the convex hull of m points, q is the number of quadrilateral faces of p (see the Wikipedia link below), and f(m) = a(n) - q. Then f(m) would be the solution of the Thompson problem for all m in 3-space. - Sergey Pavlov, Feb 03 2017
Also, sequence defined by a(0)=1, a(1)=3, c(0)=2, c(1)=4; and thereafter a(n) = c(n-1) + c(n-2), and c consists of the numbers missing from a (see A001651). - Ivan Neretin, Mar 28 2017

Examples

			G.f. = 1 + 3*x + 6*x^2 + 9*x^3 + 12*x^4 + 15*x^5 + 18*x^6 + 21*x^7 + 24*x^8 + ...
From _Omar E. Pol_, Aug 20 2011: (Start)
Illustration of initial terms as triangles:
.                                              o
.                                 o           o o
.                      o         o o         o   o
.             o       o o       o   o       o     o
.      o     o o     o   o     o     o     o       o
. o   o o   o o o   o o o o   o o o o o   o o o o o o
.
. 1    3      6        9          12           15
(End)
		

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 158.

Crossrefs

Partial sums give A005448.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574(4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579(3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529(3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Haskell
    a008486 0 = 1; a008486 n = 3 * n
    a008486_list = 1 : [3, 6 ..]  -- Reinhard Zumkeller, Apr 17 2015
  • Magma
    [0^n+3*n: n in [0..90] ]; // Vincenzo Librandi, Aug 21 2011
    
  • Mathematica
    CoefficientList[Series[(1 + x + x^2) / (1 - x)^2, {x, 0, 80}], x] (* Vincenzo Librandi, Nov 23 2014 *)
    a[ n_] := If[ n == 0, 1, 3 n]; (* Michael Somos, Apr 17 2015 *)
  • PARI
    {a(n) = if( n==0, 1, 3 * n)}; /* Michael Somos, May 05 2015 */
    

Formula

a(0) = 1; a(n) = 3*n = A008585(n), n >= 1.
Euler transform of length 3 sequence [3, 0, -1]. - Michael Somos, Aug 04 2009
a(n) = a(n-1) + 3 for n >= 2. - Jaroslav Krizek, Nov 18 2009
a(n) = 0^n + 3*n. - Vincenzo Librandi, Aug 21 2011
a(n) = -a(-n) unless n = 0. - Michael Somos, May 05 2015
E.g.f.: 1 + 3*exp(x)*x. - Stefano Spezia, Aug 07 2022

A005899 Number of points on surface of octahedron; also coordination sequence for cubic lattice: a(0) = 1; for n > 0, a(n) = 4n^2 + 2.

Original entry on oeis.org

1, 6, 18, 38, 66, 102, 146, 198, 258, 326, 402, 486, 578, 678, 786, 902, 1026, 1158, 1298, 1446, 1602, 1766, 1938, 2118, 2306, 2502, 2706, 2918, 3138, 3366, 3602, 3846, 4098, 4358, 4626, 4902, 5186, 5478, 5778, 6086, 6402, 6726, 7058, 7398, 7746, 8102, 8466
Offset: 0

Views

Author

Keywords

Comments

Also, the number of regions the plane can be cut into by two overlapping concave (2n)-gons. - Joshua Zucker, Nov 05 2002
If X is an n-set and Y_i (i=1,2,3) are mutually disjoint 2-subsets of X then a(n-5) is equal to the number of 5-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Binomial transform of a(n) is A055580(n). - Wesley Ivan Hurt, Apr 15 2014
The identity (4*n^2+2)^2 - (n^2+1)*(4*n)^2 = 4 can be written as a(n)^2 - A002522(n)*A008586(n)^2 = 4. - Vincenzo Librandi, Jun 15 2014
Also the least number of unit cubes required, at the n-th iteration, to surround a 3D solid built from unit cubes, in order to hide all its visible faces, starting with a unit cube. - R. J. Cano, Sep 29 2015
Also, coordination sequence for "tfs" 3D uniform tiling. - N. J. A. Sloane, Feb 10 2018
Also, the number of n-th order specular reflections arriving at a receiver point from an emitter point inside a cuboid with reflective faces. - Michael Schutte, Sep 18 2018

References

  • H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
  • Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (225) cF8
  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tilings #16 and #22.
  • R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums give A001845.
Column 2 * 2 of array A188645.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Row 3 of A035607, A266213, A343599.
Column 3 of A113413, A119800, A122542.

Programs

Formula

G.f.: ((1+x)/(1-x))^3. - Simon Plouffe in his 1992 dissertation
Binomial transform of [1, 5, 7, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Nov 02 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=1, a(1)=6, a(2)=18, a(3)=38. - Harvey P. Dale, Nov 08 2011
Recurrence: n*a(n) = (n-2)*a(n-2) + 6*a(n-1), a(0)=1, a(1)=6. - Fung Lam, Apr 15 2014
For n > 0, a(n) = A001844(n-1) + A001844(n) = (n-1)^2 + 2n^2 + (n+1)^2. - Doug Bell, Aug 18 2015
For n > 0, a(n) = A010014(n) - A195322(n). - R. J. Cano, Sep 29 2015
For n > 0, a(n) = A000384(n+1) + A014105(n-1). - Bruce J. Nicholson, Oct 08 2017
a(n) = A008574(n) + A008574(n-1) + a(n-1). - Bruce J. Nicholson, Dec 18 2017
a(n) = 2*d*Hypergeometric2F1(1-d, 1-n, 2, 2) where d=3, n>0. - Shel Kaphan, Feb 16 2023
a(n) = A035597(n)*3/n, for n>0. - Shel Kaphan, Feb 26 2023
E.g.f.: exp(x)*(2 + 4*x + 4*x^2) - 1. - Stefano Spezia, Mar 08 2023
Sum_{n>=0} 1/a(n) = 3/4 + Pi *sqrt(2)*coth( Pi/sqrt 2)/8 = 1.31858... - R. J. Mathar, Apr 27 2024

A000337 a(n) = (n-1)*2^n + 1.

Original entry on oeis.org

0, 1, 5, 17, 49, 129, 321, 769, 1793, 4097, 9217, 20481, 45057, 98305, 212993, 458753, 983041, 2097153, 4456449, 9437185, 19922945, 41943041, 88080385, 184549377, 385875969, 805306369, 1677721601, 3489660929, 7247757313, 15032385537, 31138512897, 64424509441
Offset: 0

Views

Author

Keywords

Comments

a(n) also gives number of 0's in binary numbers 1 to 111..1 (n+1 bits). - Stephen G Penrice, Oct 01 2000
Numerator of m(n) = (m(n-1)+n)/2, m(0)=0. Denominator is A000079. - Reinhard Zumkeller, Feb 23 2002
a(n) is the number of directed column-convex polyominoes of area n+2 having along the lower contour exactly one vertical step that is followed by a horizontal step (a reentrant corner). - Emeric Deutsch, May 21 2003
a(n) is the number of bits in binary numbers from 1 to 111...1 (n bits). Partial sums of A001787. - Emeric Deutsch, May 24 2003
Genus of graph of n-cube = a(n-3) = 1+(n-4)*2^(n-3), n>1.
Sum of ordered partitions of n where each element is summed via T(e-1). See A066185 for more information. - Jon Perry, Dec 12 2003
a(n-2) is the number of Dyck n-paths with exactly one peak at height >= 3. For example, there are 5 such paths with n=4: UUUUDDDD, UUDUUDDD, UUUDDUDD, UDUUUDDD, UUUDDDUD. - David Callan, Mar 23 2004
Permutations in S_{n+2} avoiding 12-3 that contain the pattern 13-2 exactly once.
a(n) is prime for n = 2, 3, 7, 27, 51, 55, 81. a(n) is semiprime for n = 4, 5, 6, 8, 9, 10, 11, 13, 15, 19, 28, 32, 39, 57, 63, 66, 75, 97. - Jonathan Vos Post, Jul 18 2005
A member of the family of sequences defined by a(n) = Sum_{i=1..n} i*[c(1)*...*c(r)]^(i-1). This sequence has c(1)=2, A014915 has c(1)=3. - Ctibor O. Zizka, Feb 23 2008
Starting with 1 = row sums of A023758 as a triangle by rows: [1; 2,3; 4,6,7; 8,12,14,15; ...]. - Gary W. Adamson, Jul 18 2008
Equivalent formula given in Brehm: for each q >= 3 there exists a polyhedral map M_q of type {4, q} with [number of vertices] f_0 = 2^q and [genus] g = (2^(q-3))*(q-4) + 1 such that M_q and its dual have polyhedral embeddings in R^3 [McMullen et al.]. - Jonathan Vos Post, Jul 25 2009
Sums of rows of the triangle in A173787. - Reinhard Zumkeller, Feb 28 2010
This sequence is related to A000079 by a(n) = n*A000079(n)-Sum_{i=0..n-1} A000079(i). - Bruno Berselli, Mar 06 2012
(1 + 5*x + 17*x^2 + 49*x^3 + ...) = (1 + 2*x + 4*x^2 + 8*x^3 + ...) * (1 + 3*x + 7*x^2 + 15*x^3 + ...). - Gary W. Adamson, Mar 14 2012
The first barycentric coordinate of the centroid of Pascal triangles, assuming that numbers are weights, is A000295(n+1)/A000337(n), no matter what the triangle sides are. See attached figure. - César Eliud Lozada, Nov 14 2014
a(n) is the n-th number that is a sum of n positive n-th powers for n >= 1. a(4) = 49 = A003338(4). - Alois P. Heinz, Aug 01 2020
a(n) is the sum of the largest elements of all subsets of {1,2,..,n}. For example, a(3)=17; the subsets of {1,2,3} are {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}, and the sum of the largest elements is 17. - Enrique Navarrete, Aug 20 2020
a(n-1) is the sum of the second largest elements of the subsets of {1,2,..,n} that contain n. For example, for n = 4, a(3)=17; the subsets of {1,2,3,4} that contain 4 are {4}, {1,4}, {2,4}, {3,4}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}, and the sum of the second largest elements is 17. - Enrique Navarrete, Aug 24 2020
a(n-1) is also the sum of diameters of all subsets of {1,2,...,n} that contain n. For example, for n = 4, a(3)=17; the subsets of {1,2,3,4} that contain 4 are {4}, {1,4}, {2,4}, {3,4}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}; the diameters of these sets are 0,3,2,1,3,3,2,3 and the sum is 17. - Enrique Navarrete, Sep 07 2020
a(n-1) is also the number of additions required to compute the permanent of general n X n matrices using trellis methods (see Theorems 5 and 6, pp. 10-11 in Kiah et al.). - Stefano Spezia, Nov 02 2021

References

  • F. Harary, Topological concepts in graph theory, pp. 13-17 of F. Harary and L. Beineke, editors, A seminar on Graph Theory, Holt, Rinehart and Winston, New York, 1967.
  • V. G. Gutierrez and S. L. de Medrano, Surfaces as complete intersections, in Riemann and Klein Surfaces, Automorphisms, Symmetries and Moduli Spaces, edited by Milagros Izquierdo, S. Allen Broughton, Antonio F. Costa, Contemp. Math. vol. 629, 2014, pp. 171-.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 119.
  • G. H. Hardy, A Theorem Concerning the Infinite Cardinal Numbers, Quart. J. Math., 35 (1904), p. 90 = Collected Papers of G. H. Hardy, Vol. VII, p. 430.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = T(3, n), array T given by A048472. A036799/2.
Cf. A003338.
Main diagonal of A336725.

Programs

  • GAP
    List([0..30],n->(n-1)*2^n+1); # Muniru A Asiru, Oct 24 2018
  • Magma
    [(n-1)*2^n + 1: n in [0..40]]; // Vincenzo Librandi, Nov 21 2014
    
  • Maple
    A000337 := proc(n) 1+(n-1)*2^n ; end proc: # R. J. Mathar, Oct 10 2011
  • Mathematica
    Table[Sum[(-1)^(n - k) k (-1)^(n - k) Binomial[n + 1, k + 1], {k, 0, n}], {n, 0, 28}] (* Zerinvary Lajos, Jul 08 2009 *)
    Table[(n - 1) 2^n + 1, {n, 0, 40}] (* Harvey P. Dale, Jun 21 2011 *)
    LinearRecurrence[{5, -8, 4}, {0, 1, 5}, 40] (* Harvey P. Dale, Jun 21 2011 *)
    CoefficientList[Series[x / ((1 - x) (1 - 2 x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 21 2014 *)
  • PARI
    a(n)=if(n<0,0,(n-1)*2^n+1)
    
  • Python
    a=lambda n:((n-1)<<(n))+1 # Indranil Ghosh, Jan 05 2017
    

Formula

Binomial transform of A004273. Binomial transform of A008574 if the leading zero is dropped.
G.f.: x/((1-x)*(1-2*x)^2). - Simon Plouffe in his 1992 dissertation
E.g.f.: exp(x) - exp(2*x)*(1-2*x). a(n) = 4*a(n-1) - 4*a(n-2)+1, n>0. Series reversion of g.f. A(x) is x*A034015(-x). - Michael Somos
Binomial transform of n/(n+1) is a(n)/(n+1). - Paul Barry, Aug 19 2005
a(n) = A119258(n+1,n-1) for n>0. - Reinhard Zumkeller, May 11 2006
Convolution of "Number of fixed points in all 231-avoiding involutions in S_n" (A059570) with "The odd numbers" (A005408), treating the result as if offset=0. - Graeme McRae, Jul 12 2006
a(n) = Sum_{k=1..n} k*2^(k-1), partial sums of A001787. - Zerinvary Lajos, Oct 19 2006
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3), n > 2. - Harvey P. Dale, Jun 21 2011
a(n) = Sum_{k=1..n} Sum_{i=1..n} i * C(k,i). - Wesley Ivan Hurt, Sep 19 2017
a(n) = A000295(n+1)^2 - A000295(n)*A000295(n+2). - Gregory Gerard Wojnar, Oct 23 2018

A143007 Square array, read by antidiagonals, where row n equals the crystal ball sequence for the 2*n-dimensional lattice A_n x A_n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 25, 73, 25, 1, 1, 41, 253, 253, 41, 1, 1, 61, 661, 1445, 661, 61, 1, 1, 85, 1441, 5741, 5741, 1441, 85, 1, 1, 113, 2773, 17861, 33001, 17861, 2773, 113, 1, 1, 145, 4873, 46705, 142001, 142001, 46705, 4873, 145, 1
Offset: 0

Views

Author

Peter Bala, Jul 22 2008

Keywords

Comments

The A_n lattice consists of all vectors v = (x_1,...,x_(n+1)) in Z^(n+1) such that x_1 + ... + x_(n+1) = 0. The lattice is equipped with the norm ||v|| = 1/2*(|x_1| + ... + |x_(n+1)|). Pairs of lattice points (v,w) in the product lattice A_n x A_n have norm ||(v,w)|| = ||v|| + ||w||. Then the k-th term in the crystal ball sequence for the A_n x A_n lattice gives the number of such pairs (v,w) for which ||(v,w)|| is less than or equal to k.
This array has a remarkable relationship with Apery's constant zeta(3). The row (or column) and main diagonal entries of the array occur in series acceleration formulas for zeta(3). For row n entries there holds zeta(3) = (1+1/2^3+...+1/n^3) + Sum_{k >= 1} 1/(k^3*T(n,k-1)*T(n,k)). Also, as consequence of Apery's proof of the irrationality of zeta(3), we have a series acceleration formula along the main diagonal of the table: zeta(3) = 6 * sum {n >= 1} 1/(n^3*T(n-1,n-1)*T(n,n)). Apery's result appears to generalize to the other diagonals of the table. Calculation suggests the following result may hold: zeta(3) = 1 + 1/2^3 + ... + 1/k^3 + Sum_{n >= 1} (2*n+k)*(3*n^2 +3*n*k +k^2)/(n^3*(n+k)^3*T(n-1,n+k-1)*T(n,n+k)).
For the corresponding results for the constant zeta(2), related to the crystal ball sequences of the lattices A_n, see A108625. For corresponding results for log(2), coming from either the crystal ball sequences of the hypercubic lattices A_1 x ... x A_1 or the lattices of type C_n, see A008288 and A142992 respectively.

Examples

			The table begins
n\k|0...1.....2......3.......4.......5
======================================
0..|1...1.....1......1.......1.......1
1..|1...5....13.....25......41......61 A001844
2..|1..13....73....253.....661....1441 A143008
3..|1..25...253...1445....5741...17861 A143009
4..|1..41...661...5741...33001..142001 A143010
5..|1..61..1441..17861..142001..819005 A143011
........
Example row 1 [1,5,13,...]:
The lattice A_1 x A_1 is equivalent to the square lattice of all integer lattice points v = (x,y) in Z x Z equipped with the taxicab norm ||v|| = (|x| + |y|). There are 4 lattice points (marked with a 1 on the figure below) satisfying ||v|| = 1 and 8 lattice points (marked with a 2 on the figure) satisfying ||v|| = 2. Hence the crystal ball sequence for the A_1 x A_1 lattice begins 1, 1+4 = 5, 1+4+8 = 13, ... .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . 2 . . . . .
. . . . 2 1 2 . . . .
. . . 2 1 0 1 2 . . .
. . . . 2 1 2 . . . .
. . . . . 2 . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
Row 1 = [1,5,13,...] is the sequence of partial sums of A008574; row 2 = [1,13,73,...] is the sequence of partial sums of A008530, so row 2 is the crystal ball sequence for the lattice A_2 x A_2 (the 4-dimensional di-isohexagonal orthogonal lattice).
Read as a triangle the array begins
n\k|0...1....2....3...4...5
===========================
0..|1
1..|1...1
2..|1...5....1
3..|1..13...13....1
4..|1..25...73...25...1
5..|1..41..253..253..41...1
		

Crossrefs

Cf. A001844 (row 1), A005259 (main diagonal), A008288, A008530 (first differences of row 2), A008574 (first differences of row 1), A085478, A108625, A142992, A143003, A143004, A143005, A143006, A143008 (row 2), A143009 (row 3), A142010 (row 4), A143011 (row 5).
Cf. A227845 (antidiagonal sums), A246464.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Magma
    A:= func< n,k | (&+[(Binomial(n,j)*Binomial(n+k-j,k-j))^2: j in [0..n]]) >; // Array
    A143007:= func< n,k | A(n-k,k) >; // Antidiagonal triangle
    [A143007(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    with(combinat): T:= (n,k) -> add(binomial(n+j,2*j)*binomial(2*j,j)^2*binomial(k+j,2*j), j = 0..n): for n from 0 to 9 do seq(T(n,k),k = 0..9) end do;
  • Mathematica
    T[n_, k_]:= HypergeometricPFQ[{-k, k+1, -n, n+1}, {1, 1, 1}, 1]; Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    /* Print as a square array: */
    {T(n, k)=sum(j=0, n, binomial(n+j, 2*j)*binomial(2*j, j)^2*binomial(k+j, 2*j))}
    for(n=0, 10, for(k=0,10, print1(T(n,k), ", "));print(""))
    
  • PARI
    /* (1) G.f. A(x,y) when read as a triangle: */
    {T(n,k)=local(A=1+x); A=sum(m=0, n, x^m * y^m / (1-x +x*O(x^n))^(2*m+1) * sum(k=0, m, binomial(m, k)^2*x^k)^2 ); polcoeff(polcoeff(A, n,x), k,y)}
    for(n=0, 10, for(k=0,n, print1(T(n,k), ", "));print(""))
    
  • PARI
    /* (2) G.f. A(x,y) when read as a triangle: */
    {T(n,k)=local(A=1+x); A=sum(m=0, n, x^m/(1-x*y +x*O(x^n))^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * x^k * y^k)^2 ); polcoeff(polcoeff(A, n,x), k,y)}
    for(n=0, 10, for(k=0,n, print1(T(n,k), ", "));print(""))
    
  • PARI
    /* (3) G.f. A(x,y) when read as a triangle: */
    {T(n,k)=local(A=1+x); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m , k)^2 * y^k * sum(j=0, k, binomial(k, j)^2 * x^j)+x*O(x^n))); polcoeff(polcoeff(A, n,x), k,y)}
    for(n=0, 10, for(k=0,n, print1(T(n,k), ", "));print(""))
    
  • PARI
    /* (4) G.f. A(x,y) when read as a triangle: */
    {T(n,k)=local(A=1+x); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * y^(m-k) * sum(j=0, k, binomial(k, j)^2 * x^j * y^j)+x*O(x^n))); polcoeff(polcoeff(A, n,x), k,y)}
    for(n=0, 10, for(k=0,n, print1(T(n,k), ", "));print(""))
    /* End */
    
  • SageMath
    def A(n,k): return sum((binomial(n,j)*binomial(n+k-j,k-j))^2 for j in range(n+1)) # array
    def A143007(n,k): return A(n-k,k) # antidiagonal triangle
    flatten([[A143007(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023

Formula

T(n,k) = Sum_{j = 0..n} C(n+j,2*j)*C(2*j,j)^2*C(k+j,2*j).
The array is symmetric T(n,k) = T(k,n).
The main diagonal [1,5,73,1445,...] is the sequence of Apery numbers A005259.
The entries in the k-th column satisfy the Apery-like recursion n^3*T(n,k) + (n-1)^3*T(n-2,k) = (2*n-1)*(n^2-n+1+2*k^2+2*k)*T(n-1,k).
The LDU factorization of the square array is L * D * transpose(L), where L is the lower triangular array A085478 and D is the diagonal matrix diag(C(2n,n)^2). O.g.f. for row n: The generating function for the coordination sequence of the lattice A_n is [Sum_{k = 0..n} C(n,k)^2*x^k ]/(1-x)^n. Thus the generating function for the coordination sequence of the product lattice A_n x A_n is {[Sum_{k = 0..n} C(n,k)^2*x^k]/(1-x)^n}^2 and hence the generating function for row n of this array, the crystal ball sequence of the lattice A_n x A_n, equals [Sum_{k = 0..n} C(n,k)^2*x^k]^2/(1-x)^(2n+1) = 1/(1-x)*[Legendre_P(n,(1+x)/(1-x))]^2. See [Conway & Sloane].
Series acceleration formulas for zeta(3): Row n: zeta(3) = (1 + 1/2^3 + ... + 1/n^3) + Sum_{k >= 1} 1/(k^3*T(n,k-1)*T(n,k)), n = 0,1,2,... . For example, the fourth row of the table (n = 3) gives zeta(3) = (1 + 1/2^3 + 1/3^3) + 1/(1^3*1*25) + 1/(2^3*25*253) + 1/(3^3*253*1445) + ... . See A143003 for further details.
Main diagonal: zeta(3) = 6 * Sum_{n >= 1} 1/(n^3*T(n-1,n-1)*T(n,n)). Conjectural result for other diagonals: zeta(3) = 1 + 1/2^3 + ... + 1/k^3 + Sum_{n >= 1} (2*n+k)*(3*n^2+3*n*k+k^2)/(n^3*(n+k)^3*T(n-1,n+k-1)*T(n,n+k)).
Sum_{k=0..n} T(n-k,k) = A227845(n) (antidiagonal sums). - Paul D. Hanna, Aug 27 2014
The main superdiagonal numbers S(n) := T(n,n+1) appear to satisfy the supercongruences S(m*p^r - 1) == S(m*p^(r-1) - 1) (mod p^(3*r)) for prime p >= 5 and m, r in N (this is true: see A352653. - Peter Bala, Apr 16 2022).
From Paul D. Hanna, Aug 27 2014: (Start)
G.f. A(x,y) = Sum_{n>=0, k=0..n} T(n,k)*x^n*y^k can be expressed by:
(1) Sum_{n>=0} x^n * y^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k]^2,
(2) Sum_{n>=0} x^n / (1 - x*y)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k * y^k]^2,
(3) Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * y^k * Sum_{j=0..k} C(k,j)^2 * x^j,
(4) Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * y^(n-k) * Sum_{j=0..k} C(k,j)^2 * x^j * y^j. (End)
From Peter Bala, Jun 23 2023: (Start)
T(n,k) = Sum_{j = 0..n} C(n,j)^2 * C(n+k-j,k-j)^2.
T(n,k) = binomial(n+k,k)^2 * hypergeom([-n, -n, -k, -k],[-n - k, -n - k, 1], 1).
T(n,k) = hypergeom([n+1, -n, k+1, -k], [1, 1, 1], 1). (End)
From Peter Bala, Jun 28 2023: (Start)
T(n,k) = the coefficient of (x*z)^n*(y*t)^k in the expansion of 1/( (1 - x - y)*(1 - z - t) - x*y*z*t ).
T(n,k) = A(n, k, n, k) in the notation of Straub, equation 7.
The supercongruences T(n*p^r, k*p^r) == T(n*p^(r-1), k*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and positive integers n and k.
The formula T(n,k) = hypergeom([n+1, -n, k+1, -k], [1, 1, 1], 1) allows the table indexing to be extended to negative values of n and k; we have T(-n,k) = T(n-1,k) and T(n,-k) = T(n,k-1) leading to T(-n,-k) = T(n-1, k-1). (End)
From G. C. Greubel, Oct 05 2023: (Start)
Let t(n, k) = T(n-k, k) be the antidiagonal triangle, then:
t(n, k) = t(n, n-k).
Sum_{k=0..floor(n/2)} t(n-k,k) = A246563(n).
t(2*n+1, n+1) = A352653(n+1). (End)
From Peter Bala, Sep 27 2024: (Start)
The square array = A063007 * transpose(A063007) (LU factorization).
Let L denote the lower triangular array (l(n,k))n,k >= 0, where l(n, k) = (-1)^(n+k) * binomial(n, k)*binomial(n+k, k). (L is a signed version of A063007 and L = A063007 * A007318 ^(-1).)
Then the square array = L * transpose(A108625).
L^2 * transpose(A108625) = the Hadamard product of A108625 with itself (both identities can be verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package to find recurrences for the double sums involved). (End)

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A008458 Coordination sequence for hexagonal lattice.

Original entry on oeis.org

1, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 252, 258, 264, 270, 276, 282, 288, 294, 300, 306, 312, 318, 324, 330, 336, 342, 348
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice. It is also the planar net 3.3.3.3.3.3.
Coordination sequence for 2-dimensional cyclotomic lattice Z[zeta_6].
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 20 ).
Also the Engel expansion of exp^(1/6); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002
Numbers k such that k+floor(k/2) | k*floor(k/2). - Wesley Ivan Hurt, Dec 01 2020

Examples

			From _Omar E. Pol_, Aug 20 2011: (Start)
Illustration of initial terms:
.                                             o o o o o
.                            o o o o         o         o
.               o o o       o       o       o           o
.      o o     o     o     o         o     o             o
. o   o   o   o       o   o           o   o               o
.      o o     o     o     o         o     o             o
. 1             o o o       o       o       o           o
.       6                    o o o o         o         o
.                 12                          o o o o o
.                               18
.                                                 24
(End)
G.f. = 1 + 6*x + 12*x^2 + 18*x^3 + 24*x^4 + 30*x^5 + 36*x^6 + 42*x^7 + 48*x^8 + 54*x^9 + ...
		

Crossrefs

Essentially the same as A008588.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574(4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579(3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529(3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Cf. A032528. - Omar E. Pol, Aug 20 2011
Cf. A048477 (binomial Transf.)

Programs

  • Magma
    [0^n+6*n: n in [0..60] ]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    1, seq(6*n, n=1..65);
  • Mathematica
    Join[{1},6*Range[60]] (* Harvey P. Dale, Jul 21 2013 *)
    a[ n_] := Boole[n == 0] + 6 n; (* Michael Somos, May 21 2015 *)
  • Maxima
    makelist(if n=0 then 1 else 6*n,n,0,65); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    {a(n) = 6*n + (!n)};
    
  • SageMath
    [6*n+int(n==0) for n in range(66)] # G. C. Greubel, May 25 2023

Formula

G.f.: (1 + 4*x + x^2)/(1 - x)^2.
a(n) = A003215(n) - A003215(n-1), n > 0.
Equals binomial transform of [1, 5, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Jul 08 2008
G.f.: Hypergeometric2F1([3,-2], [1], -x/(1-x)). - Paul Barry, Sep 18 2008
a(n) = 0^n + 6*n. - Vincenzo Librandi, Aug 21 2011
n*a(1) + (n-1)*a(2) + (n-2)*a(3) + ... + 2*a(n-1) + a(n) = n^3. - Warren Breslow, Oct 28 2013
E.g.f.: 1 + 6*x*exp(x). - Stefano Spezia, Jun 26 2022

A298024 Expansion of (x^4+3*x^3+6*x^2+3*x+1)/((1-x)*(1-x^3)).

Original entry on oeis.org

1, 4, 10, 14, 18, 24, 28, 32, 38, 42, 46, 52, 56, 60, 66, 70, 74, 80, 84, 88, 94, 98, 102, 108, 112, 116, 122, 126, 130, 136, 140, 144, 150, 154, 158, 164, 168, 172, 178, 182, 186, 192, 196, 200, 206, 210, 214, 220, 224, 228, 234, 238, 242, 248, 252, 256, 262
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Coordination sequence for Dual(3^3.4^2) tiling with respect to a tetravalent node. This tiling is also called the prismatic pentagonal tiling, or the cem-d net. It is one of the 11 Laves tilings. (The identification of this coordination sequence with the g.f. in the definition was first conjectured by Colin Barker, Jan 22 2018.)
Also, coordination sequence for a tetravalent node in the "krl" 2-D tiling (or net).
Both of these identifications are easily established using the "coloring book" method - see the Goodman-Strauss & Sloane link.
For n>0, this is twice A047386 (numbers congruent to 0 or +-2 mod 7).
Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, 3rd row, second tiling. (For the krl tiling.)
  • B. Gruenbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987. See p. 96. (For the Dual(3^3.4^2) tiling.)

Crossrefs

Cf. A301298.
See A298025 for partial sums, A298022 for a trivalent node.
See also A047486.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    CoefficientList[Series[(x^4+3x^3+6x^2+3x+1)/((1-x)(1-x^3)),{x,0,60}],x] (* or *) LinearRecurrence[{1,0,1,-1},{1,4,10,14,18},80] (* Harvey P. Dale, Oct 03 2018 *)
  • PARI
    See Links section.

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. (Conjectured, correctly, by Colin Barker, Jan 22 2018.)

Extensions

More terms from Rémy Sigrist, Jan 21 2018
Entry revised by N. J. A. Sloane, Mar 25 2018
Showing 1-10 of 124 results. Next