A158121 Given n points in the complex plane, let M(n) the number of distinct Moebius transformations that take 3 distinct points to 3 distinct points. Note that the triples may have some or all of the points in common.
6, 93, 591, 2381, 7316, 18761, 42253, 86281, 163186, 290181, 490491, 794613, 1241696, 1881041, 2773721, 3994321, 5632798, 7796461, 10612071, 14228061, 18816876, 24577433, 31737701, 40557401, 51330826, 64389781, 80106643, 98897541
Offset: 3
Examples
For n=3, M(3) = 3! = 6, since there aren't any redundancies. For n=4, M(4) = (6*4^2) - 3 = 93, since there are 3 redundant mappings.
References
- Michael P. Hitchman, Geometry With an Introduction to Cosmic Topology, Jones and Bartlett Publishers, 2009, pages 59-60.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
I:=[6,93,591,2381,7316,18761,42253]; [n le 7 select I[n] else 7*Self(n-1)-21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6)+Self(n-7): n in [1..30]]; // Vincenzo Librandi, Aug 14 2013
-
Mathematica
CoefficientList[Series[(6 + 51 x + 66 x^2 - 13 x^3 + 15 x^4 - 6 x^5 + x^6) / (1 - x)^7, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 14 2013 *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{6,93,591,2381,7316,18761,42253},30] (* Harvey P. Dale, Mar 07 2020 *)
-
PARI
a(n) = 6* binomial(n, 3)^2 - binomial(n, 3) + 1; \\ Michel Marcus, Aug 13 2013
Formula
M(n) = 6*C(n,3)^2 - C(n,3) + 1.
M(n) = 1/6*(n^6-6*n^5+13*n^4-13*n^3+7*n^2-2*n+6).
G.f.: x^3*(6+51*x+66*x^2-13*x^3+15*x^4-6*x^5+x^6)/(1-x)^7. - Colin Barker, May 02 2012
Extensions
More terms from Michel Marcus, Aug 13 2013
Comments