cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Fung Lam

Fung Lam's wiki page.

Fung Lam has authored 12 sequences. Here are the ten most recent ones:

A240880 Expansion of g.f.: (-1 + sqrt(1+12*x+48*x^2)) / (6*x).

Original entry on oeis.org

1, 1, -6, 33, -162, 666, -1836, -2079, 79542, -741474, 4907628, -24837030, 82449900, 53319060, -3741922008, 38613958497, -274566158298, 1475669401398, -5211777090564, -2356585871778, 240686500011588, -2593621485808596, 19047621883804056, -105353643788834598
Offset: 0

Author

Fung Lam, May 01 2014

Keywords

Comments

This sequence is the member (q=-3) of a class of generalized Catalan numbers (see A000108), with g.f. (1-sqrt(1-q*4*x*(1-(q-1)*x)))/(2*q*x), q<>0.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(Sqrt[1+12x+48x^2]-1)/(6x),{x,0,30}],x]  (* Harvey P. Dale, May 24 2022 *)

Formula

G.f.: (-1 + sqrt(1+12*x+48*x^2)) / (6*x).
D-finite with recurrence: (n+3)*a(n+2)+6*(2*n+3)*a(n+1)+48*n*a(n)=0, a(0)=1, a(1)=1.
Lim sup n->infinity |a(n)|^(1/n) = 4*sqrt(3) = 6.9282... - Vaclav Kotesovec, May 02 2014
a(n) ~ 3^(n/2-1)*4^n / (n^(3/2)*sqrt(Pi)) * (sqrt(3)*cos(5*Pi*n/6) + 3*sin(5*Pi*n/6) - (15*sqrt(3)*cos(5*Pi*n/6) + 9*sin(5*Pi*n/6))/(8*n)). - Vaclav Kotesovec, May 02 2014

A240881 Chebyshev transform of A107841.

Original entry on oeis.org

1, 2, 9, 58, 401, 2952, 22759, 181358, 1481751, 12346102, 104505959, 896170608, 7768885801, 67972510202, 599449125609, 5323095489058, 47555513297801, 427127946025752, 3854618439044959, 34934658168463958, 317834095671077751, 2901725605879035502, 26575914921615695759
Offset: 0

Author

Fung Lam, Apr 29 2014

Keywords

Comments

This is the Chebyshev transform over the positive strip 0<=x<=1. A160852 may be viewed as the Chebyshev transform over the negative strip -1<=x<=0.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x+x^2 - Sqrt[1-10*x+3*x^2-10*x^3+x^4])/(6*x*(1+x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 30 2014 *)
  • PARI
    x='x+O('x^50); Vec((1+x+x^2 - sqrt(1-10*x+3*x^2-10*x^3+x^4))/(6*x*(1+x^2))) \\ G. C. Greubel, Apr 05 2017

Formula

G.f.: (1+x+x^2 - sqrt(1-10*x+3*x^2-10*x^3+x^4))/(6*x*(1+x^2)).
G.f.: F(x/(1+x^2)), where F(x) is the g.f. of A107841.
Recurrence: (n+1)*a(n) = (5-n)*a(n-6) + 5*(2*n-7)*a(n-5) + (11-4*n)*a(n-4)
+ 20*(n-2)*a(n-3) + (5-4*n)*a(n-2) + 5*(2*n-1)*a(n-1), n>=6.
a(n) ~ (sqrt(45+20*sqrt(6))/2+sqrt(6)+5/2)^n*sqrt(120-30*sqrt(6)+2*sqrt(30*(6196*sqrt(6)-15159)))/(12*sqrt(Pi*n^3)).

A240879 Self-convolution of Sum(binomial(2*n, i), i=0..n).

Original entry on oeis.org

1, 6, 31, 150, 699, 3178, 14198, 62604, 273235, 1182786, 5085666, 21743956, 92522206, 392066340, 1655432524, 6967724312, 29245179267, 122442487474, 511487386730, 2132341655556, 8873167793578, 36861311739308, 152895342950196, 633290273209000, 2619653638855214, 10823294835350388
Offset: 0

Author

Fung Lam, Apr 13 2014

Keywords

Crossrefs

Cf. A032443.

Programs

  • Mathematica
    CoefficientList[Series[((1/Sqrt[1-4*x] + 1/(1-4*x))/2)^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 16 2014 *)

Formula

G.f. = (g.f. of A032443)^2.
n*a(n) = 32*(2*n-3)*a(n-3) + 48*(1-n)*a(n-2) + 6*(2*n-1)*a(n-1).
Asymptotics: a(n) ~ 2^(2*n)*((n+2)/4 + sqrt(n/Pi)).
Recurrence: (n-2)*n*a(n) = 2*n*(4*n-7)*a(n-1) - 8*(n-1)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Apr 16 2014

A238755 Second convolution of A065096.

Original entry on oeis.org

0, 0, 1, 12, 98, 684, 4403, 27048, 161412, 945288, 5466549, 31340628, 178604998, 1013573652, 5735117479, 32385232272, 182622362504, 1028897389008, 5793703249449, 32615362319580, 183593293074730, 1033535639454780, 5819389057957211, 32775522041862072, 184658694508103180
Offset: 0

Author

Fung Lam, Mar 04 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-3*x-Sqrt[1-6*x+x^2])^4/(16*x^3)^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 05 2014 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec((1-3*x-sqrt(1-6*x+x^2))^4/(16*x^3)^2)) \\ G. C. Greubel, Apr 05 2017

Formula

G.f. = (G.f. of A065096)^2.
Recurrence: (n+6)*a(n) = 225*(6-n)*a(n-8) + 1020*(2*n-9)*a(n-7) + 5164*(3-n)*a(n-6) + 76*(78*n-117)*a(n-5) - 3590*n*a(n-4) + 36*(34*n+51)*a(n-3) - 236*(n+3)*a(n-2) + 12*(2*n+9)*a(n-1), n>=8.
Recurrence (of order 2): (n-2)*(n+6)*a(n) = 3*(n+1)*(2*n+3)*a(n-1) - n*(n+1)*a(n-2). - Vaclav Kotesovec, Mar 05 2014
a(n) ~ (3*sqrt(2)-4)^(7/2) * (3+2*sqrt(2))^(n+6) / (8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 05 2014

A238300 Fourth convolution of A107841.

Original entry on oeis.org

1, 8, 64, 520, 4304, 36232, 309504, 2677128, 23405520, 206522888, 1836913216, 16452907016, 148274884688, 1343569891720, 12233903203328, 111883174439304, 1027244073375312, 9465236716896264, 87498251217286720, 811252609543727624, 7542152541765899728, 70294794046928531848
Offset: 0

Author

Fung Lam, Feb 25 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1+x-Sqrt[1-10*x+x^2])/(6*x))^4,{x,0,20}],x] (* Vaclav Kotesovec, Feb 27 2014 *)

Formula

G.f.: (G.f. of A107841)^4.
Recurrence: (n+4)*a(n) = (8-n)*a(n-8) + 4*(4*n-26)*a(n-7) + 64*(5-n)*a(n-6) + 8*(2*n-7)*a(n-5) + 194*(n-2)*a(n-4) + 8*(2*n-1)*a(n-3) - 64*(n+1)*a(n-2) + 8*(2*n+5)*a(n-1), n>=8.
Recurrence (of order 2): n*(n+4)*(2*n+1)*a(n) = 20*n*(n+1)*(n+2)*a(n-1) - (n-2)*(n+2)*(2*n+3)*a(n-2). - Vaclav Kotesovec, Feb 27 2014
a(n) ~ 2*sqrt(35280+14403*sqrt(6)) * (5+2*sqrt(6))^n / (27 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 27 2014

A238299 Second convolution of A107841.

Original entry on oeis.org

1, 4, 24, 164, 1208, 9348, 74920, 616420, 5176296, 44182916, 382205048, 3343343268, 29523386968, 262826367748, 2356256046216, 21254326842596, 192766180154120, 1756758963727620, 16079466335134168, 147748236828875428, 1362397741935948024, 12603116216808465284, 116929440001191010664
Offset: 0

Author

Fung Lam, Feb 25 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1 + x - Sqrt[1 - 10*x + x^2])/(6*x))^2, {x, 0, 100}], x] (* Vaclav Kotesovec, Feb 27 2014 *)

Formula

G.f.: (G.f. of A107841)^2.
Recurrence: (n+2)*a(n) = (4-n)*a(n-4) + 4*(2*n-5)*a(n-3) + 18*(n-1)*a(n-2) + 4*(2*n+1)*a(n-1), n>=4.
Recurrence (of order 2): (n+2)*(2*n-1)*a(n) = 4*(5*n^2-2)*a(n-1) - (n-2)*(2*n+1)*a(n-2). - Vaclav Kotesovec, Feb 27 2014
a(n) ~ sqrt(360+147*sqrt(6)) * (5+2*sqrt(6))^n / (9 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 27 2014

A235350 Series reversion of x*(1-2*x-x^2)/(1-x^2).

Original entry on oeis.org

1, 2, 8, 42, 248, 1570, 10416, 71474, 503088, 3612226, 26353720, 194806458, 1455874792, 10982013250, 83504148192, 639360351074, 4925190101600, 38144591091970, 296837838901992, 2319880586624714, 18200693844341720, 143294043656426082, 1131747417739664528
Offset: 1

Author

Fung Lam, Jan 16 2014

Keywords

Comments

Derived series from A107841. The reversion has a quadratic power in x in the denominator. The general form reads x*(1-p*x-q*x^2)/(1-q*x^2).

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x*(1-2*x-x^2)/(1-x^2), {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Jan 29 2014 *)
  • PARI
    Vec(serreverse(x*(1-2*x-x^2)/(1-x^2)+O(x^66))) \\ Joerg Arndt, Jan 17 2014
  • Python
    a = [0, 1]
    for n in range(20):
        m = len(a)
        d = 0
        for i in range (1, m):
            for j in range (1, m):
                if (i+j)%(m-1) == 0 and (i+j) < m:
                    d += a[i]*a[j]
        f = 0
        for i in range (1, m):
            for j in range (1, m):
                if (i+j)%m == 0 and (i+j) <= m:
                    f += a[i]*a[j]
        g = 0
        for i in range (1, m):
            for j in range (1, m):
                for k in range (1, m):
                    if (i+j+k)%m == 0 and (i+j+k) <= m:
                        g += a[i]*a[j]*a[k]
        y = g + 2*f - d
        a.append(y)
    print(a[1:]) # Edited by Andrey Zabolotskiy, Sep 04 2024
    

Formula

G.f.: (exp(4*Pi*i/3)*u + exp(2*Pi*i/3)*v - 2/3)/x, where i=sqrt(-1),
u = 1/3*(-17+3*x-6*x^2+x^3+3*sqrt(-6+54*x-30*x^2+18*x^3-3*x^4))^(1/3), and
v = 1/3*(-17+3*x-6*x^2+x^3-3*sqrt(-6+54*x-30*x^2+18*x^3-3*x^4))^(1/3).
D-finite with recurrence 6*n*(n-1)*a(n) -(n-1)*(52*n-75)*a(n-1) +(2*n+3)*(5*n-11)*a(n-2) +2*(5*n^2-62*n+150)*a(n-3) +(-13*n^2+130*n-321)*a(n-4) +(7*n-37)*(n-6)*a(n-5) -(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, Mar 24 2023

A235348 Series reversion of x*(1-2*x-5*x^2)/(1-x^2).

Original entry on oeis.org

1, 2, 12, 82, 636, 5266, 45684, 409706, 3768132, 35346082, 336854844, 3252391170, 31746462732, 312755404818, 3105750620772, 31054695744570, 312404601250644, 3159598296022978, 32108181705850860, 327682918265502002, 3357089384702757276
Offset: 1

Author

Fung Lam, Jan 13 2014

Keywords

Comments

Sum of turbulence series A107841 and A235347.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x*(1-2*x-5*x^2)/(1-x^2), {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Jan 29 2014 *)
  • PARI
    Vec( serreverse(x*(1-2*x-5*x^2)/(1-x^2) +O(x^66) ) ) \\ Joerg Arndt, Jan 14 2014
  • Python
    # R. J. Mathar, 2023-03-28
    class A235348() :
        def _init_(self) :
            self.a = [1, 2, 12, 82, 636, 5266]
        def at(self, n):
            if n <= len(self.a):
                return self.a[n-1]
            else:
                rhs = -3*(n-1)*(160*n-237)*self.at(n-1) \
                +3*(-422*n**2+1721*n-1713)*self.at(n-2) \
                +2*(-67*n**2+388*n-552)*self.at(n-3) \
                +(137*n**2-1352*n+3279)*self.at(n-4) \
                +(7*n-37)*(n-6)*self.at(n-5) -(n-6)*(n-7)*self.at(n-6)
                rhs //= (-54*n*(n-1))
                self.a.append(rhs)
                return self.a[-1]
    a235348 = A235348()
    for n in range(1,12):
        print(a235348.at(n))
    # a235348.
    

Formula

D-finite with recurrence 54*n*(n-1)*a(n) -3*(n-1)*(160*n-237)*a(n-1) +3*(-422*n^2+1721*n-1713)*a(n-2) +2*(-67*n^2+388*n-552)*a(n-3) +(137*n^2-1352*n+3279)*a(n-4) +(7*n-37)*(n-6)*a(n-5) -(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, Mar 24 2023

A235351 Series reversion of x*(1-3*x-2*x^2)/(1-x).

Original entry on oeis.org

0, 1, 2, 12, 84, 660, 5548, 48836, 444412, 4147220, 39471436, 381671204, 3738957148, 37028943860, 370123733932, 3729092573060, 37831802166076, 386135110256852, 3962278590508812, 40852572573083364, 423006921400424988, 4396894566694687924
Offset: 0

Author

Fung Lam, Jan 16 2014

Keywords

Comments

Derived turbulence series: combined series reversion of A107841 and A235349.

Crossrefs

Programs

  • PARI
    my(x='x+O('x^25)); concat([0],Vec(serreverse(x*(1-3*x-2*x^2)/(1-x)))) \\ Joerg Arndt, Sep 01 2024
  • Python
    a = [0, 1]
    for n in range(20):
        m = len(a)
        d = 0
        for i in range (1, m):
            for j in range (1, m):
                if (i+j)%m ==0 and (i+j) <= m:
                    d = d + a[i]*a[j]
        g = 0
        for i in range (1, m):
            for j in range (1, m):
                for k in range (1, m):
                    if (i+j+k)%m ==0 and (i+j+k) <= m:
                        g = g + a[i]*a[j]*a[k]
        y = 2*g + 3*d - a[m-1]
        a.append(y)
    print(a)
    

Formula

G.f.: (exp(4*Pi*i/3)*u + exp(2*Pi*i/3)*v - 1/2)/x, where i=sqrt(-1),
u = 1/6*(-54-81*x+3*sqrt(-51+522*x+549*x^2-24*x^3))^(1/3), and
v = 1/6*(-54-81*x-3*sqrt(-51+522*x+549*x^2-24*x^3))^(1/3).
D-finite with recurrence 17*n*(n+1)*(11*n-17)*a(n) -n*(1914*n^2-3915*n+1513)*a(n-1) +(-2013*n^3+7137*n^2-7924*n+2640)*a(n-2) +4*(2*n-5)*(11*n-6)*(n-2)*a(n-3)=0. - R. J. Mathar, Jun 14 2016

Extensions

a(0) = 0 prepended by Andrey Zabolotskiy, Aug 31 2024

A235347 Series reversion of x*(1-3*x^2)/(1-x^2) in odd-order powers.

Original entry on oeis.org

1, 2, 14, 130, 1382, 15906, 192894, 2427522, 31405430, 415086658, 5580629870, 76080887042, 1049295082630, 14613980359010, 205246677882078, 2903566870820610, 41337029956899222, 591796707042765954, 8514525059135909070, 123048063153362454402
Offset: 0

Author

Fung Lam, Jan 10 2014

Keywords

Comments

This sequence is implied in the solutions of magnetohydrodynamics equations in R^3 for incompressible, electrically-conducting fluids in the presence of a strong Lorentz force. a(n) = numbers of allowable magneto-vortical eddies in terms of initial conditions.

Crossrefs

Cf. A027307, A107841, A235352 (same except for signs).

Programs

  • Maple
    Order := 60 ;
    solve(series(x*(1-3*x^2)/(1-x^2),x)=y,x) ;
    convert(%,polynom) ;
    seq(coeff(%,y,2*i+1),i=0..Order/2) ; # R. J. Mathar, Jul 20 2023
  • Mathematica
    Table[(CoefficientList[InverseSeries[Series[x*(1-3*x^2)/(1-x^2),{x,0,40}],x],x])[[n]],{n,2,40,2}] (* Vaclav Kotesovec, Jan 29 2014 *)
  • PARI
    v=Vec( serreverse(x*(1-3*x^2)/(1-x^2) +O(x^66) ) ); vector(#v\2,j,v[2*j-1]) \\ Joerg Arndt, Jan 14 2014

Formula

G.f.: (exp(4*Pi*i/3)*u + exp(2*Pi*i/3)*v + x/9)/x, where i=sqrt(-1),
u = (1/9)*(x^3 - 108 *x + 9*sqrt(-9 + 141*x^2 - 3*x^4))^(1/3), and
v = (1/9)*(x^3 - 108 *x - 9*sqrt(-9 + 141*x^2 - 3*x^4))^(1/3).
a(n) = [x^n] 2*Sum_{j = 1..n} ((Sum_{k = 1..n} a(k)*x^(2*k-1))^(2*j+1)), a(1) = 1, with offset by 1.
D-finite with recurrence 12*n*(2*n+1)*a(n) +(-382*n^2+391*n-90)*a(n-1) +3*(34*n^2-132*n+125)*a(n-2) -(2*n-5)*(n-3)*a(n-3)=0. - R. J. Mathar, Mar 24 2023
From Seiichi Manyama, Aug 09 2023: (Start)
a(n) = (-1)^n * Sum_{k=0..n} (-3)^k * binomial(n,k) * binomial(2*n+k+1,n) / (2*n+k+1).
a(n) = (1/n) * Sum_{k=0..n-1} 2^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} 2^k * 3^(n-k) * binomial(n,k) * binomial(2*n,k-1) for n > 0. (End)
From Peter Bala, Sep 08 2024: (Start)
a(n) = 2*Jacobi_P(n-1, 1, n+1, 5)/n for n >= 1.
Second-order recurrence: 3*n*(2*n + 1)*(13*n - 17)*a(n) = (1222*n^3 - 2820*n^2 + 1877*n - 360)*a(n-1) - (n - 2)*(13*n - 4)*(2*n - 3)*a(n-2) with a(0) = 1 and a(1) = 2. (End)