A235352
Series reversion of x*(1+3*x^2)/(1+x^2) in odd-power terms.
Original entry on oeis.org
1, -2, 14, -130, 1382, -15906, 192894, -2427522, 31405430, -415086658, 5580629870, -76080887042, 1049295082630, -14613980359010, 205246677882078, -2903566870820610, 41337029956899222, -591796707042765954, 8514525059135909070, -123048063153362454402
Offset: 0
A235348
Series reversion of x*(1-2*x-5*x^2)/(1-x^2).
Original entry on oeis.org
1, 2, 12, 82, 636, 5266, 45684, 409706, 3768132, 35346082, 336854844, 3252391170, 31746462732, 312755404818, 3105750620772, 31054695744570, 312404601250644, 3159598296022978, 32108181705850860, 327682918265502002, 3357089384702757276
Offset: 1
-
Rest[CoefficientList[InverseSeries[Series[x*(1-2*x-5*x^2)/(1-x^2), {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Jan 29 2014 *)
-
Vec( serreverse(x*(1-2*x-5*x^2)/(1-x^2) +O(x^66) ) ) \\ Joerg Arndt, Jan 14 2014
-
# R. J. Mathar, 2023-03-28
class A235348() :
def _init_(self) :
self.a = [1, 2, 12, 82, 636, 5266]
def at(self, n):
if n <= len(self.a):
return self.a[n-1]
else:
rhs = -3*(n-1)*(160*n-237)*self.at(n-1) \
+3*(-422*n**2+1721*n-1713)*self.at(n-2) \
+2*(-67*n**2+388*n-552)*self.at(n-3) \
+(137*n**2-1352*n+3279)*self.at(n-4) \
+(7*n-37)*(n-6)*self.at(n-5) -(n-6)*(n-7)*self.at(n-6)
rhs //= (-54*n*(n-1))
self.a.append(rhs)
return self.a[-1]
a235348 = A235348()
for n in range(1,12):
print(a235348.at(n))
# a235348.
A235349
Series reversion of x*(1-x-2*x^2)/(1-x).
Original entry on oeis.org
0, 1, 0, 2, 2, 14, 30, 146, 434, 1862, 6470, 26586, 99946, 406366, 1593774, 6492450, 26100578, 106979894, 436906902, 1803472874, 7446478746, 30945624910, 128821054846, 538584390834, 2256485249682, 9483898177574
Offset: 0
-
CoefficientList[InverseSeries[Series[x*(1-x-2*x^2)/(1-x), {x, 0, 20}], x],x] (* Vaclav Kotesovec, Jan 22 2014 *)
-
Vec(serreverse(x*(1-x-2*x^2)/(1-x)+O(x^66))) \\ Joerg Arndt, Jan 17 2014
-
a = [0, 1]
for n in range(20):
m = len(a)
d = 0
for i in range (1, m):
for j in range (1, m):
if (i+j)%m == 0 and (i+j) <= m:
d += a[i]*a[j]
g = 0
for i in range (1, m-1):
for j in range (1, m-1):
for k in range (1, m-1):
if (i+j+k)%m == 0 and (i+j+k) <= m:
g += a[i]*a[j]*a[k]
y = 2*g + d - a[m-1]
a.append(y)
print(a)
Prepended a(0)=0 to adapt to offset 0,
Joerg Arndt, Jan 23 2014
A364825
G.f. satisfies A(x) = 1 - x*A(x)^3 * (1 - 3*A(x)).
Original entry on oeis.org
1, 2, 18, 222, 3166, 49098, 804138, 13686198, 239671590, 4290463698, 78160665666, 1444298971662, 27005948771886, 510024567278234, 9714561608833242, 186403770207998310, 3599812021110287862, 69914211761486437026, 1364692279095996581490
Offset: 0
-
A364825 := proc(n)
(-1)^n*add( (-3)^k*binomial(n,k) * binomial(3*n+k+1,n)/(3*n+k+1),k=0..n) ;
end proc:
seq(A364825(n),n=0..80); # R. J. Mathar, Aug 10 2023
-
a(n) = (-1)^n*sum(k=0, n, (-3)^k*binomial(n, k)*binomial(3*n+k+1, n)/(3*n+k+1));
A364826
G.f. satisfies A(x) = 1 - x*A(x)^4 * (1 - 3*A(x)).
Original entry on oeis.org
1, 2, 22, 338, 6038, 117570, 2420758, 51833106, 1142472150, 25749801986, 590737764118, 13748997055826, 323842714201622, 7704914865207362, 184899022770465558, 4470200057557410834, 108776308617293352534, 2662072268791363675650
Offset: 0
-
a(n) = (-1)^n*sum(k=0, n, (-3)^k*binomial(n, k)*binomial(4*n+k+1, n)/(4*n+k+1));
A364827
G.f. satisfies A(x) = 1 - x*A(x)^5 * (1 - 3*A(x)).
Original entry on oeis.org
1, 2, 26, 478, 10254, 240122, 5950530, 153417542, 4072868742, 110585691634, 3056671795946, 85722961493742, 2433127206219582, 69763483031049066, 2017643094336224914, 58789801741123032918, 1724199860717303739062, 50858327392484088101346
Offset: 0
-
a(n) = (-1)^n*sum(k=0, n, (-3)^k*binomial(n, k)*binomial(5*n+k+1, n)/(5*n+k+1));
A235350
Series reversion of x*(1-2*x-x^2)/(1-x^2).
Original entry on oeis.org
1, 2, 8, 42, 248, 1570, 10416, 71474, 503088, 3612226, 26353720, 194806458, 1455874792, 10982013250, 83504148192, 639360351074, 4925190101600, 38144591091970, 296837838901992, 2319880586624714, 18200693844341720, 143294043656426082, 1131747417739664528
Offset: 1
-
Rest[CoefficientList[InverseSeries[Series[x*(1-2*x-x^2)/(1-x^2), {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Jan 29 2014 *)
-
Vec(serreverse(x*(1-2*x-x^2)/(1-x^2)+O(x^66))) \\ Joerg Arndt, Jan 17 2014
-
a = [0, 1]
for n in range(20):
m = len(a)
d = 0
for i in range (1, m):
for j in range (1, m):
if (i+j)%(m-1) == 0 and (i+j) < m:
d += a[i]*a[j]
f = 0
for i in range (1, m):
for j in range (1, m):
if (i+j)%m == 0 and (i+j) <= m:
f += a[i]*a[j]
g = 0
for i in range (1, m):
for j in range (1, m):
for k in range (1, m):
if (i+j+k)%m == 0 and (i+j+k) <= m:
g += a[i]*a[j]*a[k]
y = g + 2*f - d
a.append(y)
print(a[1:]) # Edited by Andrey Zabolotskiy, Sep 04 2024
Showing 1-7 of 7 results.
Comments