cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A364825 G.f. satisfies A(x) = 1 - x*A(x)^3 * (1 - 3*A(x)).

Original entry on oeis.org

1, 2, 18, 222, 3166, 49098, 804138, 13686198, 239671590, 4290463698, 78160665666, 1444298971662, 27005948771886, 510024567278234, 9714561608833242, 186403770207998310, 3599812021110287862, 69914211761486437026, 1364692279095996581490
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2023

Keywords

Crossrefs

Programs

  • Maple
    A364825 := proc(n)
        (-1)^n*add( (-3)^k*binomial(n,k) * binomial(3*n+k+1,n)/(3*n+k+1),k=0..n) ;
    end proc:
    seq(A364825(n),n=0..80); # R. J. Mathar, Aug 10 2023
  • PARI
    a(n) = (-1)^n*sum(k=0, n, (-3)^k*binomial(n, k)*binomial(3*n+k+1, n)/(3*n+k+1));

Formula

a(n) = (-1)^n * Sum_{k=0..n} (-3)^k * binomial(n,k) * binomial(3*n+k+1,n) / (3*n+k+1).
a(n) = (1/n) * Sum_{k=0..n-1} 2^(n-k) * binomial(n,k) * binomial(4*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} 2^k * 3^(n-k) * binomial(n,k) * binomial(3*n,k-1) for n > 0.
D-finite with recurrence +2079*n*(3*n-1)*(3*n+1)*a(n) +(-347173*n^3 +395007*n^2 -41030*n -43092)*a(n-1) +18*(-59207*n^3 +325826*n^2 -590255*n +352406)*a(n-2) +3*(-3299*n^3 +35998*n^2 -125399*n +141144)*a(n-3) +9*(3*n-10)*(3*n-11) *(n-4)*a(n-4)=0. - R. J. Mathar, Aug 10 2023

A364826 G.f. satisfies A(x) = 1 - x*A(x)^4 * (1 - 3*A(x)).

Original entry on oeis.org

1, 2, 22, 338, 6038, 117570, 2420758, 51833106, 1142472150, 25749801986, 590737764118, 13748997055826, 323842714201622, 7704914865207362, 184899022770465558, 4470200057557410834, 108776308617293352534, 2662072268791363675650
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^n*sum(k=0, n, (-3)^k*binomial(n, k)*binomial(4*n+k+1, n)/(4*n+k+1));

Formula

a(n) = (-1)^n * Sum_{k=0..n} (-3)^k * binomial(n,k) * binomial(4*n+k+1,n) / (4*n+k+1).
a(n) = (1/n) * Sum_{k=0..n-1} 2^(n-k) * binomial(n,k) * binomial(5*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} 2^k * 3^(n-k) * binomial(n,k) * binomial(4*n,k-1) for n > 0.
Showing 1-2 of 2 results.