cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Warren Breslow

Warren Breslow's wiki page.

Warren Breslow has authored 1 sequences.

A193305 Composite numbers of the form 4, p^m, or 2*p^m for p an odd prime. All composites that have a primitive root.

Original entry on oeis.org

4, 6, 9, 10, 14, 18, 22, 25, 26, 27, 34, 38, 46, 49, 50, 54, 58, 62, 74, 81, 82, 86, 94, 98, 106, 118, 121, 122, 125, 134, 142, 146, 158, 162, 166, 169, 178, 194, 202, 206, 214, 218, 226, 242, 243, 250, 254, 262, 274, 278, 289, 298, 302, 314, 326, 334, 338, 343
Offset: 1

Author

Warren Breslow, Jul 21 2011

Keywords

Comments

Nonprime k such that the multiplicative group modulo k is cyclic. Nonprime terms of A033948 (omitting the initial term 1). - Joerg Arndt, Aug 07 2011
a(n) has a primitive root for any n. - Arkadiusz Wesolowski, Sep 06 2012 [See, e.g., the Niven et al. reference. - Wolfdieter Lang, Jan 18 2017]

References

  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991, Theorem 2.41, p. 104.

Crossrefs

Cf. A033948, A033949 (composites without primitive root). A279398.

Programs

  • Mathematica
    lim = 500; t = {4}; Do[p = Prime[n]; k = 1; While[p^k <= lim, If[k > 1, AppendTo[t, p^k]]; If[2*p^k <= lim, AppendTo[t, 2*p^k]]; k++], {n, 2, PrimePi[lim/2]}]; Sort[t]; (* T. D. Noe, Sep 06 2012 *)
  • PARI
    for (n=2, 555, if ( isprime(n), next() ); if ( 1 == #(znstar(n)[3]), print1(n,", ") ); );  /* Joerg Arndt, Aug 07 2011 */
    
  • Python
    from sympy import primepi, integer_nthroot
    def A193305(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-(x>=4)-sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(2,x.bit_length()))-sum(primepi(integer_nthroot(x>>1,k)[0])-1 for k in range(1,x.bit_length()-1)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 24 2025

Extensions

More terms from Joerg Arndt, Aug 07 2011
Name corrected and augmented by Wolfdieter Lang, Jan 18 2017