A045618
Partial sums of A000337(n+4), n >= 0.
Original entry on oeis.org
1, 6, 23, 72, 201, 522, 1291, 3084, 7181, 16398, 36879, 81936, 180241, 393234, 851987, 1835028, 3932181, 8388630, 17825815, 37748760, 79691801, 167772186, 352321563, 738197532, 1543503901, 3221225502, 6710886431, 13958643744
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 14.
- Brian Nakamura and Elizabeth Yang, Competition graphs induced by permutations, arXiv preprint arXiv:1503.05617 [math.CO], 2015.
- Alina F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
-
Table[Sum[(-1)^(n - k) k (-1)^(n - k) Binomial[n + 2, k + 2], {k, 0, n}], {n, 1, 28}] (* Zerinvary Lajos, Jul 08 2009 *)
Rest[Accumulate[LinearRecurrence[{5,-8,4},{0,1,5},40]]] (* Harvey P. Dale, Dec 19 2011 *)
CoefficientList[Series[1/((1 - x)^2 (1 - 2 x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 22 2014 *)
LinearRecurrence[{6, -13, 12, -4},{1, 6, 23, 72},28] (* Ray Chandler, Aug 03 2015 *)
-
a(n)=(n-1)<<(n+2)+n+5 \\ Charles R Greathouse IV, Nov 21 2011
A104746
Array T(n,k) read by antidiagonals: T(1,k) = 2^k-1 and recursively T(n,k) = T(n-1,k) + A000337(k-1), n,k >= 1.
Original entry on oeis.org
1, 1, 3, 1, 4, 7, 1, 5, 12, 15, 1, 6, 17, 32, 31, 1, 7, 22, 49, 80, 63, 1, 8, 27, 66, 129, 192, 127, 1, 9, 32, 83, 178, 321, 448, 255, 1, 10, 37, 100, 227, 450, 769, 1024, 511, 1, 11, 42, 117, 276, 579, 1090, 1793, 2304, 1023, 1, 12, 47, 134, 325, 708, 1411, 2562, 4097, 5120, 2047, 1, 13, 52, 151, 374, 837, 1732, 3331, 5890, 9217, 11264, 4095
Offset: 1
To the first row, add the terms 0, 1, 5, 17, 49, 129, ... as indicated:
1, 3, 7, 15, 31, 63, ...
0, 1, 5, 17, 49, 129, ... (getting row 2 of the array:
1, 4, 12, 32, 80, 192, ... (= A001787, binomial transform for 1,2,3, ...)
Repeat the operation, getting the following array T(n,k):
1, 3, 7, 15, 31, 63, ...
1, 4, 12, 32, 80, 192, ...
1, 5, 17, 49, 129, 321, ...
1, 6, 22, 66, 178, 450, ...
-
A000337 := proc(n)
1+(n-1)*2^n ;
end proc:
A104746 := proc(n,k)
option remember;
if n= 1 then
2^k-1 ;
else
procname(n-1,k)+A000337(k-1) ;
end if;
end proc:
for d from 1 to 12 do
for k from 1 to d do
n := d-k+1 ;
printf("%d,",A104746(n,k)) ;
end do:
end do; # R. J. Mathar, Oct 30 2011
-
A000337[n_] := (n - 1)*2^n + 1;
T[1, k_] := 2^k - 1;
T[n_, k_] := T[n, k] = T[n - 1, k] + A000337[k - 1];
Table[T[n - k + 1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 30 2024 *)
Original entry on oeis.org
0, 1, 5, 17, 49, 129, 321, 769, 1793, 4097, 9217, 20481, 45057, 98305, 212993
Offset: 1
Original entry on oeis.org
5, 17, 769, 3489660929, 112589990684262401, 1945555039024054273, 193428131138340667952988161
Offset: 1
Clearer (but incorrect) definition from R. J. Mathar, Jan 27 2008, corrected Oct 10 2011
A001787
a(n) = n*2^(n-1).
Original entry on oeis.org
0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 53248, 114688, 245760, 524288, 1114112, 2359296, 4980736, 10485760, 22020096, 46137344, 96468992, 201326592, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 16106127360, 33285996544
Offset: 0
a(2)=4 since 2314, 2341,3124 and 4123 are the only 132-avoiding permutations of 1234 containing exactly one increasing subsequence of length 3.
x + 4*x^2 + 12*x^3 + 32*x^4 + 80*x^5 + 192*x^6 + 448*x^7 + ...
a(5) = 1*0 + 5*1 + 10*2 + 10*3 + 5*4 + 1*5 = 80, with 1,5,10,10,5,1 the 5th row of Pascal's triangle. - _J. M. Bergot_, Apr 29 2014
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 131.
- Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 282.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Franklin T. Adams-Watters, Table of n, a(n) for n = 0..500
- Rémi Abgrall and Wasilij Barsukow, Extensions of Active Flux to arbitrary order of accuracy, arXiv:2208.14476 [math.NA], 2022.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- F. S. Al-Kharousi, A. Umar, and M. M. Zubairu, On injective partial Catalan monoids, arXiv:2501.00285 [math.GR], 2024. See p. 9.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- Douglas W. Bass and I. Hal Sudborough, Hamilton decompositions and (n/2)-factorizations of hypercubes, J. Graph Algor. Appl., Vol. 7, No. 1 (2003), pp. 79-98.
- Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- Harlan J. Brothers, Pascal's Prism: Supplementary Material.
- David Callan, A recursive bijective approach to counting permutations containing 3-letter patterns, arXiv:math/0211380 [math.CO], 2002.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Frank Ellermann, Illustration of binomial transforms
- Mohamed Elkadi and Bernard Mourrain, Symbolic-numeric methods for solving polynomial equations and applications, Chap 3. of A. Dickenstein and I. Z. Emiris, eds., Solving Polynomial Equations, Springer, 2005, pp. 126-168. See p. 152.
- Alejandro Erickson, Frank Ruskey, Mark Schurch and Jennifer Woodcock, Auspicious Tatami Mat Arrangements, The 16th Annual International Computing and Combinatorics Conference (COCOON 2010), July 19-21, Nha Trang, Vietnam. LNCS 6196 (2010) 288-297.
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, Advances in Applied Mathematics, Vol. 77 (2016), pp. 1-42, arXiv preprint, arXiv:1603.01040 [math.CO], 2016.
- Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424.
- Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. (Annotated scanned copy)
- Frank A. Haight, Letter to N. J. A. Sloane, n.d.
- V. E. Hoggatt, Jr., Letter to N. J. A. Sloane, Jul 06, 1976
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=4, q=-4.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 408. (Dead link)
- Milan Janjić, Two Enumerative Functions.
- Milan Janjić and Boris Petković, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- Milan Janjić and Boris Petković, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- C. W. Jones, J. C. P. Miller, J. F. C. Conn, and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A. 62, (1946). 187-203.
- Kenji Kimura and Saburo Higuchi, Monte Carlo estimation of the number of tatami tilings, International Journal of Modern Physics C, Vol. 27, No. 11 (2016), 1650128, arXiv preprint, arXiv:1509.05983 [cond-mat.stat-mech], 2015-2016, eq. (1).
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, University of Kentucky Research Reports (2004). (Dead link)
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012.
- T. Y. Lam, On the diagonalization of quadratic forms, Math. Mag., 72 (1999), 231-235 (see page 234).
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. See Eq.(3).
- Duško Letić, Nenad Cakić, Branko Davidović, Ivana Berković and Eleonora Desnica, Some certain properties of the generalized hypercubical functions, Advances in Difference Equations, 2011, 2011:60.
- Toufik Mansour and Armend Sh. Shabani, Bargraphs in bargraphs, Turkish Journal of Mathematics (2018) Vol. 42, Issue 5, 2763-2773.
- Ronald Orozco López, Deformed Differential Calculus on Generalized Fibonacci Polynomials, arXiv:2211.04450 [math.CO], 2022.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Michael Penn, on the alternating sum of subsets, YouTube video, 2021.
- Michael Penn, Rare proof of well-known sum, YouTube video, 2023.
- Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
- Maxwell Phillips, Ahmed Ammar, and Firas Hassan, A Generalized Multi-Level Structure for High-Precision Binary Decoders, IEEE 67th Int'l Midwest Symp. Circ. Sys. (MWSCAS 2024), 42-46.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Lara Pudwell, Nathan Chenette and Manda Riehl, Statistics on Hypercube Orientations, AMS Special Session on Experimental and Computer Assisted Mathematics, Joint Mathematics Meetings (Denver 2020).
- Lara Pudwell, Connor Scholten, Tyler Schrock and Alexa Serrato, Noncontiguous pattern containment in binary trees, ISRN Comb. 2014, Article ID 316535, 8 p. (2014), chapter 5.2.
- Aaron Robertson, Permutations containing and avoiding 123 and 132 patterns, Discrete Math. and Theoret. Computer Sci., 3 (1999), 151-154.
- Aaron Robertson, Herbert S. Wilf and Doron Zeilberger, Permutation patterns and continued fractions, Electr. J. Combin. 6, 1999, #R38.
- Thomas Selig and Haoyue Zhu, Complete non-ambiguous trees and associated permutations: connections through the Abelian sandpile model, arXiv:2303.15756 [math.CO], 2023, see p. 16.
- Jeffrey Shallit, Letter to N. J. A. Sloane Mar 14, 1979, concerning A001787, A005209, A005210, A005211.
- Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Hypercube.
- Eric Weisstein's World of Mathematics, Hypercube Graph.
- Eric Weisstein's World of Mathematics, Leibniz Harmonic Triangle.
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Maximum Clique.
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Cf.
A053109,
A001788,
A001789,
A000337,
A130300,
A134083,
A002064,
A027471,
A003945,
A059670,
A167591,
A059260,
A016777,
A212697,
A000079,
A263646.
-
a001787 n = n * 2 ^ (n - 1)
a001787_list = zipWith (*) [0..] $ 0 : a000079_list
-- Reinhard Zumkeller, Jul 11 2014
-
[n*2^(n-1): n in [0..40]]; // Vincenzo Librandi, Feb 04 2016
-
spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..29); # Zerinvary Lajos, Oct 09 2006
A001787:=1/(2*z-1)^2; # Simon Plouffe in his 1992 dissertation, dropping the initial zero
-
Table[Sum[Binomial[n, i] i, {i, 0, n}], {n, 0, 30}] (* Geoffrey Critzer, Mar 18 2009 *)
f[n_] := n 2^(n - 1); f[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
Array[# 2^(# - 1) &, 40, 0] (* Harvey P. Dale, Jul 26 2011 *)
Join[{0}, Table[n 2^(n - 1), {n, 20}]] (* Eric W. Weisstein, Dec 01 2017 *)
Join[{0}, LinearRecurrence[{4, -4}, {1, 4}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[x/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
-
{a(n) = if( n<0, 0, n * 2^(n-1))}
-
concat(0, Vec(x/(1-2*x)^2 + O(x^50))) \\ Altug Alkan, Nov 03 2015
-
def A001787(n): return n*(1<Chai Wah Wu, Nov 14 2022
A000295
Eulerian numbers (Euler's triangle: column k=2 of A008292, column k=1 of A173018).
Original entry on oeis.org
0, 0, 1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616, 4294967263, 8589934558
Offset: 0
G.f. = x^2 + 4*x^3 + 11*x^4 + 26*x^5 + 57*x^6 + 120*x^7 + 247*x^8 + 502*x^9 + ...
- O. Bottema, Problem #562, Nieuw Archief voor Wiskunde, 28 (1980) 115.
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." Section 6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 34.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..500
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See pp. 9, 17, 18.
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- Jean-Luc Baril and J. M. Pallo, The pruning-grafting lattice of binary trees, Theoretical Computer Science, 409, 2008, 382-393.
- Jean-Luc Baril and José L. Ramírez, Some distributions in increasing and flattened permutations, arXiv:2410.15434 [math.CO], 2024. See p. 7.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Peter J. Cameron, Maximilien Gadouleau, James D. Mitchell, and Yann Peresse, Chains of subsemigroups, arXiv preprint arXiv:1501.06394 [math.GR], 2015. See Table 4.
- Matteo Cervetti and Luca Ferrari, Pattern avoidance in the matching pattern poset, arXiv:2009.01024 [math.CO], 2020.
- Shelby Cox, Pratik Misra, and Pardis Semnani, Homaloidal Polynomials and Gaussian Models of Maximum Likelihood Degree One, arXiv:2402.06090 [math.AG], 2024.
- Benjamin Hellouin de Menibus and Yvan Le Borgne, Asymptotic behaviour of the one-dimensional "rock-paper-scissors" cyclic cellular automaton, arXiv:1903.12622 [math.PR], 2019.
- Karl Dilcher and Maciej Ulas, Arithmetic properties of polynomial solutions of the Diophantine equation P(x)x^(n+1)+Q(x)(x+1)^(n+1) = 1, arXiv:1909.11222 [math.NT], 2019.
- Filippo Disanto, Some Statistics on the Hypercubes of Catalan Permutations, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.2.
- J. M. Dusel, Balanced parabolic quotients and branching rules for Demazure crystals, J Algebr Comb (2016) 44: 363. DOI: 10.1007/s10801-016-0673-y.
- Pascal Floquet, Serge Domenech and Luc Pibouleau, Combinatorics of Sharp Separation System synthesis : Generating functions and Search Efficiency Criterion, Industrial Engineering and Chemistry Research, 33, pp. 440-443, 1994.
- Pascal Floquet, Serge Domenech, Luc Pibouleau and Said Aly, Some Complements in Combinatorics of Sharp Separation System Synthesis, American Institute of Chemical Engineering Journal, 39(6), pp. 975-978, 1993.
- E. T. Frankel, A calculus of figurate numbers and finite differences, American Mathematical Monthly, 57 (1950), 14-25. [Annotated scanned copy]
- Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
- R. K. Guy, Letter to N. J. A. Sloane.
- Ryota Inagaki, Tanya Khovanova, and Austin Luo, On Chip-Firing on Undirected Binary Trees, Ann. Comb. (2025). See pp. 24-25.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 388.
- Wayne A. Johnson, An Euler operator approach to Ehrhart series, arXiv:2303.16991 [math.CO], 2023.
- Lucas Kang, Investigation of Rule 73 as Case Study of Class 4 Long-Distance Cellular Automata, arXiv preprint arXiv:1310.3311 [nlin.CG], 2013.
- Oliver Kullmann and Xishun Zhao, Bounds for variables with few occurrences in conjunctive normal forms, arXiv preprint arXiv:1408.0629 [math.CO], 2014.
- César Eliud Lozada, Centroids of Pascal triangles
- Candice A. Marshall, Construction of Pseudo-Involutions in the Riordan Group, Dissertation, Morgan State University, 2017.
- Peter Charles Mendenhall and Hal M. Switkay, Consecutively Halved Positional Voting: A Special Case of Geometric Voting, Social Sciences vol. 12 no. 2 (2023), 47-59.
- J. C. P. Miller, Letter to N. J. A. Sloane, Mar 26 1971
- J. W. Moon, A problem on arcs without bypasses in tournaments, J. Combinatorial Theory Ser. B 21 (1976), no. 1, 71--75. MR0427129(55 #165).
- Agustín Moreno Cañadas, Hernán Giraldo, and Gabriel Bravo Rios, On the Number of Sections in the Auslander-Reiten Quiver of Algebras of Dynkin Type, Far East Journal of Mathematical Sciences (FJMS), Vol. 101, No. 8 (2017), pp. 1631-1654.
- Nagatomo Nakamura, Pseudo-Normal Random Number Generation via the Eulerian Numbers, Josai Mathematical Monographs, vol 8, p 85-95, 2015.
- Emily Norton, Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions, arXiv preprint arXiv:1302.5411 [math.RA], 2013.
- Ronald Orozco López, Solution of the Differential Equation y^(k)= e^(a*y), Special Values of Bell Polynomials and (k,a)-Autonomous Coefficients, Universidad de los Andes (Colombia 2021).
- J. M. Pallo, Weak associativity and restricted rotation, Information Processing Letters, 109, 2009, 514-517.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- J. Riordan, Review of Frankel (1950) [Annotated scanned copy]
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 20 (1968), 8-16.
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 19 (1968), 8-16. [Annotated scanned copy]
- Markus Sigg, Collatz iteration and Euler numbers?
- Eric Weisstein's World of Mathematics, Chromatic Invariant
- Eric Weisstein's World of Mathematics, Prism Graph
- Wikipedia, Reed's Law
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
- Anssi Yli-Jyra, On Dependency Analysis via Contractions and Weighted FSTs, in Shall We Play the Festschrift Game?, Springer, 2012, pp. 133-158. - _N. J. A. Sloane_, Dec 25 2012
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Cf.
A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf.
A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
-
a000295 n = 2^n - n - 1 -- Reinhard Zumkeller, Nov 25 2013
-
[2^n-n-1: n in [0..40]]; // Vincenzo Librandi, Jul 29 2015
-
[EulerianNumber(n, 1): n in [0..40]]; // G. C. Greubel, Oct 02 2024
-
[ seq(2^n-n-1, n=1..50) ];
A000295 := -z/(2*z-1)/(z-1)**2; # Simon Plouffe in his 1992 dissertation
# Grammar specification:
spec := [S, { B = Set(Z, 1 <= card), C = Sequence(B, 2 <= card), S = Prod(B, C) }, unlabeled]:
struct := n -> combstruct[count](spec, size = n+1);
seq(struct(n), n = 0..33); # Peter Luschny, Jul 22 2014
-
a[n_] = If[n==0, 0, n*(HypergeometricPFQ[{1, 1-n}, {2}, -1] - 1)];
Table[a[n], {n,0,40}] (* Olivier Gérard, Mar 29 2011 *)
LinearRecurrence[{4, -5, 2}, {0, 0, 1}, 40] (* Vincenzo Librandi, Jul 29 2015 *)
Table[2^n -n-1, {n,0,40}] (* Eric W. Weisstein, Nov 16 2017 *)
-
a(n)=2^n-n-1 \\ Charles R Greathouse IV, Jun 10 2011
-
[2^n -(n+1) for n in range(41)] # G. C. Greubel, Oct 02 2024
A008574
a(0) = 1, thereafter a(n) = 4n.
Original entry on oeis.org
1, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232
Offset: 0
From _Omar E. Pol_, Aug 20 2011 (Start):
Illustration of initial terms as perimeters of squares (cf. Perry's comment above):
. o o o o o o
. o o o o o o o
. o o o o o o o o
. o o o o o o o o o
. o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
.
. 1 4 8 12 16 20
(End)
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Joerg Arndt, The 3.4.6.4 net
- Matthias Beck and Serkan Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
- Pierre de la Harpe, On the prehistory of growth of groups, arXiv:2106.02499 [math.GR], 2021.
- Jean-Guillaume Eon, Symmetry and Topology: The 11 Uninodal Planar Nets Revisited, Symmetry, 10 (2018), 13 pages, doi:10.3390/sym10020035. See Section 7.
- Brian Galebach, k-uniform tilings (k <= 6) and their A-numbers
- Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also on arXiv, arXiv:1803.08530 [math.CO], 2018-2019.
- Rostislav Grigorchuk and Cosmas Kravaris, On the growth of the wallpaper groups, arXiv:2012.13661 [math.GR], 2020. See section 4.2 p. 20.
- Branko Grünbaum and Geoffrey C. Shephard, Tilings by regular polygons, Mathematics Magazine, 50 (1977), 227-247.
- A. J. Guttmann, Indicators of solvability for lattice models, Discrete Math., 217 (2000), 167-189.
- D. Hansel et al., Analytical properties of the anisotropic cubic Ising model, J. Stat. Phys., 48 (1987), 69-80.
- Tom Karzes, Tiling Coordination Sequences
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Reticular Chemistry Structure Resource, sql and htb
- Anton Shutov and Andrey Maleev, Coordination sequences of 2-uniform graphs, Z. Kristallogr., 235 (2020), 157-166. See supplementary material, krb, vertex u_1.
- N. J. A. Sloane, Illustration of points in shells 0 through 12 of the 3.4.6.4 planar net (see Comments for discussion)
- N. J. A. Sloane, The uniform planar nets and their A-numbers [Annotated scanned figure from Gruenbaum and Shephard (1977)]
- N. J. A. Sloane, Overview of coordination sequences of Laves tilings [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
- N. J. A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences (II), Experimental Mathematics Seminar, Rutgers University, Jan 31 2019, Part I, Part 2, Slides. (Mentions this sequence)
- Michael Somos, Rational Function Multiplicative Coefficients
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] =
A008486; [3.3.3.3.6] =
A298014,
A298015,
A298016; [3.3.3.4.4] =
A298022,
A298024; [3.3.4.3.4] =
A008574,
A296368; [3.6.3.6] =
A298026,
A298028; [3.4.6.4] =
A298029,
A298031,
A298033; [3.12.12] =
A019557,
A298035; [4.4.4.4] =
A008574; [4.6.12] =
A298036,
A298038,
A298040; [4.8.8] =
A022144,
A234275; [6.6.6] =
A008458.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt
A265035,
A265036; #2 cph
A301287,
A301289; #3 krm
A301291,
A301293; #4 krl
A301298,
A298024; #5 krq
A301299,
A301301; #6 krs
A301674,
A301676; #7 krr
A301670,
A301672; #8 krk
A301291,
A301293; #9 krn
A301678,
A301680; #10 krg
A301682,
A301684; #11 bew
A008574,
A296910; #12 krh
A301686,
A301688; #13 krf
A301690,
A301692; #14 krd
A301694,
A219529; #15 krc
A301708,
A301710; #16 usm
A301712,
A301714; #17 krj
A219529,
A301697; #18 kre
A301716,
A301718; #19 krb
A301720,
A301722; #20 kra
A301724,
A301726.
-
a008574 0 = 1; a008574 n = 4 * n
a008574_list = 1 : [4, 8 ..] -- Reinhard Zumkeller, Apr 16 2015
-
f[0] = 1; f[n_] := 4 n; Array[f, 59, 0] (* or *)
CoefficientList[ Series[(1 + x)^2/(1 - x)^2, {x, 0, 58}], x] (* Robert G. Wilson v, Jan 02 2011 *)
Join[{1},Range[4,232,4]] (* Harvey P. Dale, Aug 19 2011 *)
a[ n_] := 4 n + Boole[n == 0]; (* Michael Somos, Jan 07 2019 *)
-
{a(n) = 4*n + !n}; /* Michael Somos, Apr 16 2007 */
A023758
Numbers of the form 2^i - 2^j with i >= j.
Original entry on oeis.org
0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, 32, 48, 56, 60, 62, 63, 64, 96, 112, 120, 124, 126, 127, 128, 192, 224, 240, 248, 252, 254, 255, 256, 384, 448, 480, 496, 504, 508, 510, 511, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1023
Offset: 1
a(22) = 64 = 32 + 32 = 2^5 + a(16) = 2^A003056(20) + a(22-5-1).
a(23) = 96 = 64 + 32 = 2^6 + a(16) = 2^A003056(21) + a(23-6-1).
a(24) = 112 = 64 + 48 = 2^6 + a(17) = 2^A003056(22) + a(24-6-1).
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 5051 terms from T. D. Noe)
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- S. M. Shabab Hossain, Md. Mahmudur Rahman and M. Sohel Rahman, Solving a Generalized Version of the Exact Cover Problem with a Light-Based Device, Optical Supercomputing, Lecture Notes in Computer Science, 2011, Volume 6748/2011, 23-31, DOI: 10.1007/978-3-642-22494-2_4.
- Eric Weisstein's World of Mathematics, Digit.
- Wikipedia, Ring counter.
- Index entries for 2-automatic sequences.
- Index entries for sequences related to binary expansion of n.
Positions of nonzero terms in
A341509 (apart from the initial zero).
Positions of squarefree terms in
A260443.
-
import Data.Set (singleton, deleteFindMin, insert)
a023758 n = a023758_list !! (n-1)
a023758_list = 0 : f (singleton 1) where
f s = x : f (if even x then insert z s' else insert z $ insert (z+1) s')
where z = 2*x; (x, s') = deleteFindMin s
-- Reinhard Zumkeller, Sep 24 2014, Dec 19 2012
-
a:=proc(n) local n2,d: n2:=convert(n,base,2): d:={seq(n2[j]-n2[j-1],j=2..nops(n2))}: if n=0 then 0 elif n=1 then 1 elif d={0,1} or d={0} or d={1} then n else fi end: seq(a(n),n=0..2100); # Emeric Deutsch, Apr 22 2006
-
Union[Flatten[Table[2^i - 2^j, {i, 0, 100}, {j, 0, i}]]] (* T. D. Noe, Mar 15 2011 *)
Select[Range[0, 2^10], NoneTrue[Differences@ IntegerDigits[#, 2], # > 0 &] &] (* Michael De Vlieger, Sep 05 2017 *)
-
for(n=0,2500,if(prod(k=1,length(binary(n))-1,component(binary(n),k)+1-component(binary(n),k+1))>0,print1(n,",")))
-
A023758(n)= my(r=round(sqrt(2*n--))); (1<<(n-r*(r-1)/2)-1)<<(r*(r+1)/2-n)
/* or, to illustrate the "decreasing digit" property and analogy to A064222: */
A023758(n,show=0)={ my(a=0); while(n--, show & print1(a","); a=vecsort(binary(a+1)); a*=vector(#a,j,2^(j-1))~); a} \\ M. F. Hasler, May 06 2009
-
is(n)=if(n<5,1,n>>=valuation(n,2);n++;n>>valuation(n,2)==1) \\ Charles R Greathouse IV, Jan 04 2016
-
list(lim)=my(v=List([0]),t); for(i=1,logint(lim\1+1,2), t=2^i-1; while(t<=lim, listput(v,t); t*=2)); Set(v) \\ Charles R Greathouse IV, May 03 2016
-
def a_next(a_n): return (a_n | (a_n >> 1)) + (a_n & 1)
a_n = 1; a = [0]
for i in range(55): a.append(a_n); a_n = a_next(a_n) # Falk Hüffner, Feb 19 2022
-
from math import isqrt
def A023758(n): return (1<<(m:=isqrt(n-1<<3)+1>>1))-(1<<(m*(m+1)-(n-1<<1)>>1)) # Chai Wah Wu, Feb 23 2025
A001855
Sorting numbers: maximal number of comparisons for sorting n elements by binary insertion.
Original entry on oeis.org
0, 1, 3, 5, 8, 11, 14, 17, 21, 25, 29, 33, 37, 41, 45, 49, 54, 59, 64, 69, 74, 79, 84, 89, 94, 99, 104, 109, 114, 119, 124, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 255, 261, 267, 273, 279, 285
Offset: 1
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.3.1, Eq. (3); Sect. 6.2.1 (4).
- J. W. Moon, Topics on Tournaments. Holt, NY, 1968, p. 48.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Tianxing Tao, On optimal arrangement of 12 points, pp. 229-234 in Combinatorics, Computing and Complexity, ed. D. Du and G. Hu, Kluwer, 1989.
- Paolo Xausa, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Michael Albert, Michael Engen, Jay Pantone, and Vincent Vatter, Universal layered permutations, arXiv:1710.04240 [math.CO], (2017).
- Michael Albert, Michael Engen, Jay Pantone, and Vincent Vatter, Universal Layered Permutations, Electronic Journal of Combinatorics. Volume 25(3), 2018, #P3.23.
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
- Sung-Hyuk Cha, On Integer Sequences Derived from Balanced k-ary Trees, Applied Mathematics in Electrical and Computer Engineering, 2012.
- Sung-Hyuk Cha, On Complete and Size Balanced k-ary Tree Integer Sequences, International Journal of Applied Mathematics and Informatics, Issue 2, Volume 6, 2012, pp. 67-75. - From _N. J. A. Sloane_, Dec 24 2012
- Hsien-Kuei Hwang, S. Janson, and T.-H. Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint 2016.
- Hsien-Kuei Hwang, S. Janson, and T.-H. Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 36.
- Tanya Khovanova, There are no coincidences, arXiv preprint 1410.2193 [math.CO], 2014.
- D. Knuth, Letter to N. J. A. Sloane, date unknown
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
- R. Stephan, Some divide-and-conquer sequences ...
- R. Stephan, Table of generating functions
- Eric Weisstein's World of Mathematics, Sorting.
- Index entries for sequences related to sorting
-
import Data.List (transpose)
a001855 n = a001855_list !! n
a001855_list = 0 : zipWith (+) [1..] (zipWith (+) hs $ tail hs) where
hs = concat $ transpose [a001855_list, a001855_list]
-- Reinhard Zumkeller, Jun 03 2013
-
a := proc(n) local k; k := ilog2(n) + 1; 1 + n*k - 2^k end; # N. J. A. Sloane, Dec 01 2007 [edited by Peter Luschny, Nov 30 2017]
-
a[n_?EvenQ] := a[n] = n + 2a[n/2] - 1; a[n_?OddQ] := a[n] = n + a[(n+1)/2] + a[(n-1)/2] - 1; a[1] = 0; a[2] = 1; Table[a[n], {n, 1, 58}] (* Jean-François Alcover, Nov 23 2011, after Pari *)
a[n_] := n IntegerLength[n, 2] - 2^IntegerLength[n, 2] + 1;
Table[a[n], {n, 1, 58}] (* Peter Luschny, Dec 02 2017 *)
Accumulate[BitLength[Range[0, 100]]] (* Paolo Xausa, Sep 30 2024 *)
-
a(n)=if(n<2,0,n-1+a(n\2)+a((n+1)\2))
-
a(n)=local(m);if(n<2,0,m=length(binary(n-1));n*m-2^m+1)
-
def A001855(n):
s, i, z = 0, n-1, 1
while 0 <= i: s += i; i -= z; z += z
return s
print([A001855(n) for n in range(1, 59)]) # Peter Luschny, Nov 30 2017
-
def A001855(n): return n*(m:=(n-1).bit_length())-(1<Chai Wah Wu, Mar 29 2023
Additional comments from M. D. McIlroy (mcilroy(AT)dartmouth.edu)
A119258
Triangle read by rows: T(n,0) = T(n,n) = 1 and for 0
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 7, 17, 15, 1, 1, 9, 31, 49, 31, 1, 1, 11, 49, 111, 129, 63, 1, 1, 13, 71, 209, 351, 321, 127, 1, 1, 15, 97, 351, 769, 1023, 769, 255, 1, 1, 17, 127, 545, 1471, 2561, 2815, 1793, 511, 1, 1, 19, 161, 799, 2561, 5503, 7937, 7423, 4097, 1023, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 5, 7, 1;
1, 7, 17, 15, 1;
1, 9, 31, 49, 31, 1;
- Reinhard Zumkeller, Rows n=0..120 of triangle, flattened
- A. Björner and V. Welker, The homology of "k-equal" manifolds and related partition lattices, Adv. Math., 110 (1995), 277-313.
- Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, Pinnacle sets of signed permutations, arXiv:2301.02628 [math.CO], 2023.
- R. M. Green, Homology representations arising from the half cube, Adv. Math., 222 (2009), 216-239.
- R. M. Green, Homology representations arising from the half cube, II, J. Combin. Theory Ser. A, 117 (2010), 1037-1048.
- R. M. Green, Homology representations arising from the half cube, II, arXiv:0812.1208 [math.RT], 2008.
- R. M. Green and Jacob T. Harper, Morse matchings on polytopes, arXiv preprint arXiv:1107.4993 [math.GT], 2011.
- OEIS Wiki, Sequence of the Day for November 3.
- K. Petras, On the Smolyak cubature error for analytic functions, Adv. Comput. Math., 12 (2000), 71-93.
- M. Shattuck and T. Waldhauser, Proofs of some binomial identities using the method of last squares, Fib. Q., 48 (2010), 290-297.
- M. Shattuck and T. Waldhauser, Proofs of some binomial identities using the method of last squares, arXiv:1107.1063 [math.CO], 2010.
- Index entries for triangles and arrays related to Pascal's triangle
A145661,
A119258 and
A118801 are all essentially the same (see the Shattuck and Waldhauser paper). - Tamas Waldhauser, Jul 25 2011
-
a119258 n k = a119258_tabl !! n !! k
a119258_row n = a119258_tabl !! n
a119258_list = concat a119258_tabl
a119258_tabl = iterate (\row -> zipWith (+)
([0] ++ init row ++ [0]) $ zipWith (+) ([0] ++ row) (row ++ [0])) [1]
-- Reinhard Zumkeller, Nov 15 2011
-
function T(n,k)
if k eq 0 or k eq n then return 1;
else return 2*T(n-1,k-1) + T(n-1,k);
end if;
return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 18 2019
-
# Case m = 2 of the more general:
A119258 := (n,k,m) -> (1-m)^(-n+k)-m^(k+1)*pochhammer(n-k, k+1) *hypergeom([1,n+1],[k+2],m)/(k+1)!;
seq(seq(round(evalf(A119258(n,k,2))),k=0..n), n=0..10); # Peter Luschny, Jul 25 2014
-
T[n_, k_] := Binomial[n, k] Hypergeometric2F1[-k, n-k, n-k+1, -1];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 10 2017 *)
-
T(n,k) = if(k==0 || k==n, 1, 2*T(n-1, k-1) + T(n-1,k) ); \\ G. C. Greubel, Nov 18 2019
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
else: return 2*T(n-1, k-1) + T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 18 2019
Showing 1-10 of 70 results.
Comments