cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A045889 Partial sums of A045618.

Original entry on oeis.org

1, 7, 30, 102, 303, 825, 2116, 5200, 12381, 28779, 65658, 147594, 327835, 721069, 1573056, 3408084, 7340265, 15728895, 33554710, 71303470, 150995271, 318767457, 671089020, 1409286552, 2952790453, 6174015955, 12884902386
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A045618.

Programs

  • Mathematica
    Table[(n^2 + 11 n + 34)/2 + (n - 2)*2^(n + 3), {n, 0, 26}] (* or *)
    CoefficientList[Series[1/((1 - 2 x)^2*(1 - x)^3), {x, 0, 26}], x] (* Michael De Vlieger, Sep 21 2017 *)
  • PARI
    Vec(1/((1-2*x)^2*(1-x)^3) + O(x^40)) \\ Michel Marcus, Sep 20 2017

Formula

a(n) = (n^2+11*n+34)/2 + (n-2)*2^(n+3).
G.f.: 1/((1-2*x)^2*(1-x)^3).
a(n) = Sum_{k=1..n+4} Sum_{i=1..n+4} (i-k) * C(n-k+4,i). - Wesley Ivan Hurt, Sep 19 2017

A127670 Discriminants of Chebyshev S-polynomials A049310.

Original entry on oeis.org

1, 4, 32, 400, 6912, 153664, 4194304, 136048896, 5120000000, 219503494144, 10567230160896, 564668382613504, 33174037869887488, 2125764000000000000, 147573952589676412928, 11034809241396899282944, 884295678882933431599104, 75613185918270483380568064
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2007

Keywords

Comments

a(n-1) is the number of fixed n-cell polycubes that are proper in n-1 dimensions (Barequet et al., 2010).
From Rigoberto Florez, Sep 02 2018: (Start)
a(n-1) is the discriminant of the Morgan-Voyce Fibonacci-type polynomial B(n).
Morgan-Voyce Fibonacci-type polynomials are defined as B(0) = 0, B(1) = 1 and B(n) = (x+2)*B(n-1) - B(n-2) for n > 1.
The absolute value of the discriminant of Fibonacci polynomial F(n) is a(n-1).
Fibonacci polynomials are defined as F(0) = 0, F(1) = 1 and F(n) = x*F(n-1) + F(n-2) for n > 1. (End)
The first 6 values are the dimensions of the polynomial ring in 3n variables xi, yi, zi for 1 <= i <= n modulo the ideal generated by x1^a y1^b z1^c + ... + xn^a yn^b zn^c for 0 < a+b+c <= n (see Fact 2.8.1 in Haiman's paper). - Mike Zabrocki, Dec 31 2019

Examples

			n=3: The zeros are [sqrt(2),0,-sqrt(2)]. The Vn(xn[1],...,xn[n]) matrix is [[1,1,1],[sqrt(2),0,-sqrt(2)],[2,0,2]]. The squared determinant is 32 = a(3). - _Wolfdieter Lang_, Aug 07 2011
		

References

  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf.
  • G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219 for T and U polynomials.

Crossrefs

Cf. A007701 (T-polynomials), A086804 (U-polynomials), A171860 and A191092 (fixed n-cell polycubes proper in n-2 and n-3 dimensions, resp.).
A317403 is essentially the same sequence.
Diagonal 1 of A195739.

Programs

  • Magma
    [((n+1)^n/(n+1)^2)*2^n: n in [1..20]]; // Vincenzo Librandi, Jun 23 2014
  • Mathematica
    Table[((n + 1)^n)/(n + 1)^2 2^n, {n, 1, 30}] (* Vincenzo Librandi, Jun 23 2014 *)

Formula

a(n) = ((n+1)^(n-2))*2^n, n >= 1.
a(n) = (Det(Vn(xn[1],...,xn[n])))^2 with the determinant of the Vandermonde matrix Vn with elements (Vn)i,j:= xn[i]^j, i=1..n, j=0..n-1 and xn[i]:=2*cos(Pi*i/(n+1)), i=1..n, are the zeros of S(n,x):=U(n,x/2).
a(n) = ((-1)^(n*(n-1)/2))*Product_{j=1..n} ((d/dx)S(n,x)|_{x=xn[j]}), n >= 1, with the zeros xn[j], j=1..n, given above.
a(n) = A007830(n-2)*A000079(n), n >= 2. - Omar E. Pol, Aug 27 2011
E.g.f.: -LambertW(-2*x)*(2+LambertW(-2*x))/(4*x). - Vaclav Kotesovec, Jun 22 2014

Extensions

Slightly edited by Gill Barequet, May 24 2011

A055580 Björner-Welker sequence: 2^n*(n^2 + n + 2) - 1.

Original entry on oeis.org

1, 7, 31, 111, 351, 1023, 2815, 7423, 18943, 47103, 114687, 274431, 647167, 1507327, 3473407, 7929855, 17956863, 40370175, 90177535, 200278015, 442499071, 973078527, 2130706431, 4647288831, 10099884031, 21877489663
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000; revised Feb 12 2001

Keywords

Comments

a(n) is the d=1 Betti number of the complement of '3-equal' arrangements in n-dimensional real space, see Björner-Welker reference, Table I, pp. 308-309, column '1' with k=3 and Th. 5.2, pp. 297-298.
Binomial transform of [1/2, 2/3, 3/4, 4/5, ...] = 1/2, 7/6, 31/12, 111/20, 351/30, 1023/42, ..., where 2, 6, 12, 20, ... = A002378 (deleting the zero). - Gary W. Adamson, Apr 28 2005
Number of three-dimensional block structures associated with n joint systems in the construction of stable underground structures. - Richard M. Green, Jul 26 2011
Number of monotone mappings from the chain with three points to the complete binary tree of height n (n+1 levels). For example, the seven monotone mappings from the chain with three points (denoted 1,2,3, in order) to the complete binary tree with two levels (with a the root of the tree, and b, c the atoms) are: f(1)=f(2)=f(3)=a; f(1)=f(2)=a, f(3)=b; f(1)=f(2)=a, f(3)=c; f(1)=a, f(2)=f(3)=b; f(1)=a, f(2)=f(3)=c; f(1)=f(2)=f(3)=b; f(1)=f(2)=f(3)=c. - Pietro Codara, Mar 26 2015

References

  • H. Barcelo and S. Smith, The discrete fundamental group of the order complex of B_n, Abstract 1020-05-141, 1020th Meeting Amer. Math. Soc., Cincinatti, Ohio, Oct 21-22, 2006.

Crossrefs

Fourth column of triangle A055252.

Programs

  • Magma
    [2^n*(n^2+n+2)-1: n in [0..35]]; // Vincenzo Librandi, Jul 28 2011
    
  • Mathematica
    Table[ n*(n+1)*2^(n-2), {n, 0, 26}] // Accumulate // Rest (* Jean-François Alcover, Jul 09 2013, after Paul Barry *)
    LinearRecurrence[{7,-18,20,-8},{1,7,31,111},30] (* Harvey P. Dale, Nov 27 2014 *)
  • PARI
    a(n)=(n^2+n+2)<Charles R Greathouse IV, Jul 28 2011

Formula

a(n) = A055252(n+3, 3).
a(n) = Sum_{j=0..n-1} a(j) + A045618(n), n >= 1.
G.f.: 1/((1-2*x)^3*(1-x)).
Partial sums of A001788 (without leading zero). - Paul Barry, Jun 26 2003
a(n) = A001788(n) - A000337(n). - Jon Perry, Dec 12 2003
a(n) = A119258(n+4,n). - Reinhard Zumkeller, May 11 2006
E.g.f.: 2*(1 + 2*x + 2*x^2)*exp(2*x) - exp(x). - G. C. Greubel, Oct 28 2016
a(n) = Sum_{k=0..n+1} Sum_{i=0..n+1} i^2 * C(k,i). - Wesley Ivan Hurt, Sep 21 2017

Extensions

Edited (for consistency with change of offset) by M. F. Hasler, Nov 03 2012

A055249 Triangle of partial row sums (prs) of triangle A055248 (prs of Pascal's triangle A007318).

Original entry on oeis.org

1, 3, 1, 8, 4, 1, 20, 12, 5, 1, 48, 32, 17, 6, 1, 112, 80, 49, 23, 7, 1, 256, 192, 129, 72, 30, 8, 1, 576, 448, 321, 201, 102, 38, 9, 1, 1280, 1024, 769, 522, 303, 140, 47, 10, 1, 2816, 2304, 1793, 1291, 825, 443, 187, 57, 11, 1, 6144, 5120, 4097, 3084, 2116, 1268, 630
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is ((1-z)/(1-2*z)^2)/(1-x*z/(1-z)).
This is the second member of the family of Riordan-type matrices obtained from A007318(n,m) (Pascal's triangle read as lower triangular matrix) by repeated application of the prs-procedure.
The column sequences appear in A001792, A001787, A000337, A045618, A045889, A034009, A055250, A055251 for m=0..7.

Examples

			1;
3,1;
8,4,1;
20,12,5,1;
...
Fourth row polynomial (n=3): p(3,x)= 20+12*x+5*x^2+x^3
		

Crossrefs

Cf. A007318, A055248, A008949. Row sums: A049611(n+1) = A055252(n, 0).

Programs

  • Mathematica
    a[n_, m_] := Binomial[n, m]*Hypergeometric2F1[2, m-n, m+1, -1]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Mar 11 2014 *)

Formula

a(n, m) = Sum_{k=m,..,n} ( A055248(n, k) ), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m) = Sum_{j=m,..,(n-1)} ( a(j, m) ) + A055248(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: ((1-x)/(1-2*x)^2)*(x/(1-x))^m, m >= 0.
a(n, m) = binomial(n, m) * 2F1(2, m-n; m+1; -1) where 2F1 is the hypergeometric function. Jean-François Alcover, Mar 11 2014

A206817 Sum_{0

Original entry on oeis.org

1, 10, 73, 520, 3967, 33334, 309661, 3166468, 35416555, 430546642, 5655609529, 79856902816, 1206424711303, 19419937594990, 331860183278677, 6000534640290364, 114462875817046051, 2297294297649673738, 48394006967070653425
Offset: 2

Author

Clark Kimberling, Feb 12 2012

Keywords

Comments

In the following guide to related sequences,
c(n) = Sum_{0
t(n) = Sum_{0
s(k).................c(n)........t(n)
k....................A000217.....A000292
k^2..................A016061.....A004320
k^3..................A206808.....A206809
k^4..................A206810.....A206811
k!...................A206816.....A206817
prime(k).............A152535.....A062020
prime(k+1)...........A185382.....A206803
2^(k-1)..............A000337.....A045618
k(k+1)/2.............A007290.....A034827
k-th quarter-square..A049774.....A206806

Examples

			a(3) = (2-1) + (6-1) + (6-2) = 10.
		

Crossrefs

Programs

  • Mathematica
    s[k_] := k!; t[1] = 0;
    p[n_] := Sum[s[k], {k, 1, n}];
    c[n_] := n*s[n] - p[n];
    t[n_] := t[n - 1] + (n - 1) s[n] - p[n - 1];
    Table[c[n], {n, 2, 32}]          (* A206816 *)
    Flatten[Table[t[n], {n, 2, 20}]] (* A206817 *)
  • PARI
    a(n)=sum(j=1,n,j!*(2*j-n-1)) \\ Charles R Greathouse IV, Oct 11 2015
    
  • PARI
    a(n)=my(t=1); sum(j=1,n,t*=j; t*(2*j-n-1)) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [sum([sum([factorial(k)-factorial(j) for j in range(1,k)]) for k in range(2,n+1)]) for n in range(2,21)] # Danny Rorabaugh, Apr 18 2015
    

Formula

a(n) = a(n-1)+(n-1)s(n)-p(n-1), where s(n) = n! and p(k) = 1!+2!+...+k!.
a(n) = Sum_{k=2..n} A206816(k).

A188553 T(n,k) = Number of n X k binary arrays without the pattern 0 1 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

2, 3, 3, 4, 5, 4, 5, 8, 7, 5, 6, 12, 12, 9, 6, 7, 17, 20, 16, 11, 7, 8, 23, 32, 28, 20, 13, 8, 9, 30, 49, 48, 36, 24, 15, 9, 10, 38, 72, 80, 64, 44, 28, 17, 10, 11, 47, 102, 129, 112, 80, 52, 32, 19, 11, 12, 57, 140, 201, 192, 144, 96, 60, 36, 21, 12, 13, 68, 187, 303, 321, 256, 176
Offset: 1

Author

R. H. Hardin, Apr 04 2011

Keywords

Comments

From Miquel A. Fiol, Feb 06 2024: (Start)
Also, T(n,k) is the number of words of length k, x(1)x(2)...x(k), on the alphabet {0,1,...,n}, such that, for i=2,...,k, x(i)=either x(i-1) or x(i)=x(i-1)-1.
For the bijection between arrays and sequences, notice that the i-th column consists of 1's and then 0's, and there are x(i)=0 to n of 1's.
Such a bijection implies that all the empirical/conjectured formulas in A188554, A188555, A188556, A188557, A188558, and A188559 become correct.
(End)

Examples

			Table starts
..2..3..4..5...6...7...8...9...10...11...12....13....14....15....16.....17
..3..5..8.12..17..23..30..38...47...57...68....80....93...107...122....138
..4..7.12.20..32..49..72.102..140..187..244...312...392...485...592....714
..5..9.16.28..48..80.129.201..303..443..630...874..1186..1578..2063...2655
..6.11.20.36..64.112.192.321..522..825.1268..1898..2772..3958..5536...7599
..7.13.24.44..80.144.256.448..769.1291.2116..3384..5282..8054.12012..17548
..8.15.28.52..96.176.320.576.1024.1793.3084..5200..8584.13866.21920..33932
..9.17.32.60.112.208.384.704.1280.2304.4097..7181.12381.20965.34831..56751
.10.19.36.68.128.240.448.832.1536.2816.5120..9217.16398.28779.49744..84575
.11.21.40.76.144.272.512.960.1792.3328.6144.11264.20481.36879.65658.115402
Some solutions for 5 X 3:
  1 1 1   1 0 0   0 0 0   1 1 1   1 1 1   1 1 1   1 1 1
  1 1 1   0 0 0   0 0 0   1 1 1   1 1 1   1 1 1   1 1 1
  1 1 1   0 0 0   0 0 0   1 1 1   1 0 0   1 1 0   1 1 1
  1 1 1   0 0 0   0 0 0   1 1 0   0 0 0   1 0 0   1 1 1
  1 1 1   0 0 0   0 0 0   1 0 0   0 0 0   0 0 0   1 1 0
Some solutions for T(5,3): By taking the sums of the columns in the above arrays we get 555, 100, 000, 543, 322, 432, 554. - _Miquel A. Fiol_, Feb 04 2024
		

Crossrefs

Diagonal is A045623.
Column 4 is A086570.
Upper diagonals T(n,n+i) for i=1..8 give: A001792, A001787(n+1), A000337(n+1), A045618, A045889, A034009, A055250, A055251.
Lower diagonals T(n+i,n) for i=1..7 give: A045891(n+1), A034007(n+2), A111297(n+1), A159694(n-1), A159695(n-1), A159696(n-1), A159697(n-1).
Antidiagonal sums give A065220(n+5).

Programs

  • Maple
    T:= (n,k)-> `if`(k<=n+1, (2*n+3-k)*2^(k-2), (n+1-k)*binomial(k-1, n) * add(binomial(n, j-1)/(k-j)*T(n, j)*(-1)^(n-j), j=1..n+1)): seq(seq(T(n, 1+d-n), n=1..d), d=1..15); #Alois P. Heinz in the Sequence Fans Mailing List, Apr 04 2011 [We do not permit programs based on conjectures, but this program is now justified by Fiol's comment. - N. J. A. Sloane, Mar 09 2024]

Formula

Empirical: T(n,k) = (n+1)*2^(k-1) + (1-k)*2^(k-2) for k < n+3, and then the entire row n is a polynomial of degree n in k.
From Miquel A. Fiol, Feb 06 2024: (Start)
The above empirical formula is correct.
It can be proved that T(n,k) satisfies the recurrence
T(n,k) = Sum_{r=1..n+1} (-1)^(r+1)*binomial(n+1,r)*T(n,k-r)
with initial values
T(n,k) = Sum_{r=0..k-1} (n+1-r)*binomial(k-1,r) for k = 1..n+1. (End)

A053218 Triangle read by rows: T(n,k) = T(n,k-1) + T(n-1,k-1) for k >= 2 with T(n,1) = n.

Original entry on oeis.org

1, 2, 3, 3, 5, 8, 4, 7, 12, 20, 5, 9, 16, 28, 48, 6, 11, 20, 36, 64, 112, 7, 13, 24, 44, 80, 144, 256, 8, 15, 28, 52, 96, 176, 320, 576, 9, 17, 32, 60, 112, 208, 384, 704, 1280, 10, 19, 36, 68, 128, 240, 448, 832, 1536, 2816, 11, 21, 40, 76, 144, 272, 512, 960, 1792, 3328
Offset: 1

Author

Asher Auel, Jan 01 2000

Comments

Last term in each row gives A001792. Difference between center term of row 2n-1 and row sum of row n, (A053220(n+4) - A053221(n+4)) gives A045618(n).
For all integers k >= 2, if a sequence k,k-1,k+2,k-3,k+4,...,2,2k-2,1,2k-1, b0(n) with offset 1, is written, the sequence b0(2)-b0(1), b0(3)-b0(2), b0(4)-b0(3), ..., b0(2k-1)-b0(2k-2), b1(n) with offset 1, is written under it, the sequence b1(2)-b1(1), b1(3)-b1(2), b1(4)-b1(3), ..., b1(2k-2)-b1(2k-3), b2(n) with offset 1, is written under this, and so on until the sequence b(2k-3)(2)-b(2k-3)(1), b(2k-2)(n) with offset 1 (which will contain only one term), is written, and then the sequence b1(1); b1(2),b2(1); b1(3),b2(2),b3(1); ...; b1(2k-2), b2(2k-3), b3(2k-4), ..., b(2k-2)(1) is obtained, then this sequence will be identical to the first 2k^2-3k+1 terms of a(n), except that the first term of this sequence will be negative, the next two terms will be positive, the next three will be negative, the next four positive, and so on.
Subtriangle of triangle in A152920. - Philippe Deléham, Nov 21 2011

Examples

			Triangle T(n,k) begins:
  1;
  2,  3;
  3,  5,  8;
  4,  7, 12, 20;
  5,  9, 16, 28, 48;
  6, 11, 20, 36, 64, 112;
  7, 13, 24, 44, 80, 144, 256;
  ...
		

Crossrefs

Cf. A053219 (reverse of this triangle), A053220 (center elements), A053221 (row sums), A001792, A045618, A152920.

Programs

  • Mathematica
    NestList[FoldList[Plus, #[[1]] + 1, #] &, {1}, 10] // Grid (* Geoffrey Critzer, Jun 27 2013 *)

Formula

T(n, k) = n*2^(k-1) - (k-1)*2^(k-2). - Ya-Ping Lu, Mar 24 2023

A110441 Triangular array formed by the Mersenne numbers.

Original entry on oeis.org

1, 3, 1, 7, 6, 1, 15, 23, 9, 1, 31, 72, 48, 12, 1, 63, 201, 198, 82, 15, 1, 127, 522, 699, 420, 125, 18, 1, 255, 1291, 2223, 1795, 765, 177, 21, 1, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27, 1
Offset: 0

Author

Asamoah Nkwanta (nkwanta(AT)jewel.morgan.edu), Aug 08 2005

Keywords

Comments

This sequence factors A038255 into a product of Riordan arrays.
Subtriangle of the triangle given by (0, 3, -2/3, 2/3, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 19 2012
From Peter Bala, Jul 22 2014: (Start)
Let M denote the lower unit triangular array A130330 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section. (End)
For 1<=k<=n, T(n,k) equals the number of (n-1)-length ternary words containing k-1 letters equal 2 and avoiding 01 and 02. - Milan Janjic, Dec 20 2016
The convolution triangle of the Mersenne numbers. - Peter Luschny, Oct 09 2022

Examples

			Triangle starts:
   1;
   3,  1;
   7,  6,  1;
  15, 23,  9,  1;
  31, 72, 48, 12,  1;
(0, 3, -2/3, 2/3, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
  1
  0,  1
  0,  3,  1
  0,  7,  6,  1
  0, 15, 23,  9,  1
  0, 31, 72, 48, 12, 1. - _Philippe Deléham_, Mar 19 2012
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
/ 1          \/1         \/1        \      / 1       \
| 3  1       ||0  1      ||0 1      |      | 3  1    |
| 7  3 1     ||0  3 1    ||0 0 1    |... = | 7  6 1  |
|15  7 3 1   ||0  7 3 1  ||0 0 3 1  |      |15 23 9 1|
|31 15 7 3 1 ||0 15 7 3 1||0 0 7 3 1|      |...      |
|...         ||...       ||...      |      |...      | - _Peter Bala_, Jul 22 2014
		

Crossrefs

Programs

  • Maple
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
  • Mathematica
    With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - (3 + y) x + 2 x^2), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)

Formula

Riordan array M(n, k): (1/(1-3z+2z^2), z/(1-3z+2z^2)). Leftmost column M(n, 0) is the Mersenne numbers A000225, first column is A045618, second column is A055582, row sum is A007070 and diagonal sum is even-indexed Fibonacci numbers A001906.
T(n,k) = Sum_{j=0..n} C(j+k,k)C(n-j,k)2^(n-j-k). - Paul Barry, Feb 13 2006
From Philippe Deléham, Mar 19 2012: (Start)
G.f.: 1/(1-(3+y)*x+2*x^2).
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) -2*T(n-2,k), T(0,0) = 1, T(n,k) = 0 if k<0 or if k>n.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000225(n+1), A007070(n), A107839(n), A154244(n), A186446(n), A190975(n+1), A190979(n+1), A190869(n+1) for x = 0, 1, 2, 3, 4, 5, 6, 7 respectively. (End)
Recurrence: T(n+1,k+1) = Sum_{i=0..n-k} (2^(i+1) - 1)*T(n-i,k). - Peter Bala, Jul 22 2014
From Peter Bala, Oct 07 2019: (Start)
Recurrence for row polynomials: R(n,x) = (3 + x)*R(n-1,x) - 2*R(n-2,x) with R(0,x) = 1 and R(1,x) = 3 + x.
The row reverse polynomial x^n*R(n,1/x) is equal to the numerator polynomial of the finite continued fraction 1 + x/(1 + 2*x/(1 + ... + x/(1 + 2*x/(1)))) (with 2*n partial numerators). Cf. A116414. (End)

A378727 The total number of fires in a rooted undirected infinite 4-ary tree with a self-loop at the root, when the chip-firing process starts with (4^n-1)/3 chips at the root.

Original entry on oeis.org

0, 1, 10, 67, 380, 1973, 9710, 46119, 213600, 970905, 4349650, 19262731, 84507460, 367855997, 1590728630, 6840133103, 29269406760, 124713124449, 529394487450, 2239745908435, 9447655468300, 39745309211461, 166799986198910, 698474942207927, 2918999758480880, 12176398992520233, 50707195804467810
Offset: 1

Author

Tanya Khovanova and the MIT PRIMES STEP senior group, Dec 05 2024

Keywords

Comments

Each vertex of this tree has degree 5. If a vertex has at least 5 chips, the vertex fires, and one chip is sent to each neighbor. The root sends 1 chip to each of its four children and one chip to itself.
The order of the firings doesn't affect the number of firings.
This number of chips is interesting because the stable configuration has 1 chip for every vertex in the top n layers.
a(n) is partial sums of A014916.
For binary trees, the corresponding sequence is A045618.
For ternary trees, the corresponding sequence is A212337.
For 5-ary trees, the corresponding sequence is A378728.
a(2k-1) is divisible by 10.

Crossrefs

Programs

  • Mathematica
    Table[((3 n - 5) 4^n + 3 n + 5)/27, {n, 30}]

Formula

a(n) = ((3*n - 5)*4^n + 3*n + 5)/27.

A378728 The total number of fires in a rooted undirected infinite 5-ary tree with a self-loop at the root, when the chip-firing process starts with (5^n-1)/4 chips at the root.

Original entry on oeis.org

0, 1, 12, 98, 684, 4395, 26856, 158692, 915528, 5187989, 28991700, 160217286, 877380372, 4768371583, 25749206544, 138282775880, 739097595216, 3933906555177, 20861625671388, 110268592834474, 581145286560060, 3054738044738771, 16018748283386232, 83819031715393068
Offset: 1

Author

Tanya Khovanova and the MIT PRIMES STEP senior group, Dec 05 2024

Keywords

Comments

Each vertex of this tree has degree 6. If a vertex has at least 6 chips, the vertex fires, and one chip is sent to each neighbor. The root sends 1 chip to each of its five children and one chip to itself.
The order of the firings doesn't affect the number of firings.
This number of chips is interesting because the stable configuration has 1 chip for every vertex in the top n layers.
a(n) is partial sums of A014917.
For binary trees, the corresponding sequence is A045618.
For ternary trees, the corresponding sequence is A212337.
For 4-ary trees, the corresponding sequence is A378727.
a(2k-1) is divisible by 12.

Crossrefs

Programs

  • Mathematica
    Table[((2 n - 3) 5^n + 2 n + 3)/32, {n, 30}]

Formula

a(n) = ((2*n - 3)*5^n + 2*n + 3)/32.
G.f.: x^2/(1-6*x+5*x^2)^2. - Jinyuan Wang, Jan 24 2025
Showing 1-10 of 33 results. Next